Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Aging ; 4(1): 27-32, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049585

ABSTRACT

DNA methylation rates have previously been found to broadly correlate with maximum lifespan in mammals, yet no precise relationship has been observed. We developed a statistically robust framework to compare methylation rates at conserved age-related sites across mammals. We found that methylation rates negatively scale with maximum lifespan in both blood and skin. The emergence of explicit scaling suggests that methylation rates are, or are linked to, an evolutionary constraint on maximum lifespan acting across diverse mammalian lineages.


Subject(s)
DNA Methylation , Longevity , Animals , Longevity/genetics , DNA Methylation/genetics , Mammals/genetics , Biological Evolution
2.
Aging Cell ; 22(8): e13866, 2023 08.
Article in English | MEDLINE | ID: mdl-37170475

ABSTRACT

Recent studies suggest that epigenetic rejuvenation can be achieved using drugs that mimic calorie restriction and techniques such as reprogramming-induced rejuvenation. To effectively test rejuvenation in vivo, mouse models are the safest alternative. However, we have found that the recent epigenetic clocks developed for mouse reduced-representation bisulphite sequencing (RRBS) data have significantly poor performance when applied to external datasets. We show that the sites captured and the coverage of key CpGs required for age prediction vary greatly between datasets, which likely contributes to the lack of transferability in RRBS clocks. To mitigate these coverage issues in RRBS-based age prediction, we present two novel design strategies that use average methylation over large regions rather than individual CpGs, whereby regions are defined by sliding windows (e.g. 5 kb), or density-based clustering of CpGs. We observe improved correlation and error in our regional blood clocks (RegBCs) compared to published individual-CpG-based techniques when applied to external datasets. The RegBCs are also more robust when applied to low coverage data and detect a negative age acceleration in mice undergoing calorie restriction. Our RegBCs offer a proof of principle that age prediction of RRBS datasets can be improved by accounting for multiple CpGs over a region, which negates the lack of read depth currently hindering individual-CpG-based approaches.


Subject(s)
DNA Methylation , Epigenomics , Mice , Animals , DNA Methylation/genetics , CpG Islands/genetics , Sequence Analysis, DNA/methods , Epigenesis, Genetic
3.
Nat Med ; 28(7): 1439-1446, 2022 07.
Article in English | MEDLINE | ID: mdl-35788175

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) increases rapidly in prevalence beyond age 60 and has been associated with increased risk for malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Because mutations in HSPCs often drive leukemia, we hypothesized that HSPC fitness substantially contributes to transformation from CHIP to leukemia. HSPC fitness is defined as the proliferative advantage over cells carrying no or only neutral mutations. If mutations in different genes lead to distinct fitness advantages, this could enable patient stratification. We quantified the fitness effects of mutations over 12 years in older age using longitudinal sequencing and developed a filtering method that considers individual mutational context alongside mutation co-occurrence to quantify the growth potential of variants within individuals. We found that gene-specific fitness differences can outweigh inter-individual variation and, therefore, could form the basis for personalized clinical management.


Subject(s)
Hematopoiesis , Leukemia , Clonal Hematopoiesis , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , Humans , Leukemia/pathology , Middle Aged , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...