Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 71: 103194, 2023 09.
Article in English | MEDLINE | ID: mdl-37651831

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a mutation in the HTT gene. To generate human-induced pluripotent stem cells (hiPSCs), we used dermal fibroblasts from 1 healthy adult control (K-Pic2), 1 HD manifest patient (M-T2), 1 healthy juvenile control (jK-N1), and 1 juvenile HD patient (jHD-V1). HD stage of patients was assessed by neurological tests and donors were without comorbidities and were non-smokers. Characterization showed that the obtained hiPSCs have the same number of CAG repeats as the parental fibroblast lines, express pluripotency markers and have the ability to differentiate into all 3 germ layers.


Subject(s)
Arthrogryposis , Huntington Disease , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Adult , Huntington Disease/genetics , Fibroblasts
2.
Stem Cell Res ; 64: 102931, 2022 10.
Article in English | MEDLINE | ID: mdl-36228511

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant heritability that affect the central nervous system and peripheral tissues. The human-induced pluripotent stem cells (hiPSC) lines were generated from dermal fibroblasts of patients without comorbidities, non-smokers, at the pre-manifest (IIMCBi004-A), early-manifest (IIMCBi005-A), and manifest (IIMCBi006-A) HD stage assessed by neurological tests, as well as from a healthy donor (IIMCBi003-A). Characterization showed that the obtained hiPSC lines contained different CAG repeats consistent with the number of CAG repeats in original fibroblasts. Moreover, hiPSCs expressed pluripotency markers and were able to differentiate into three-germ layers in vitro.


Subject(s)
Huntington Disease , Induced Pluripotent Stem Cells , Humans , Huntington Disease/genetics
3.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232541

ABSTRACT

Silver nanoparticles (AgNPs) are found in open waters, but the effect of their low concentrations on an organism's homeostasis is not fully understood. The aim of the study was to determine the short-term exposure effects of AgNPs coated by PvP (polyvinylpyrrolidone) on the homeostasis of livers and gonads in zebrafish. Sexually mature zebrafish were exposed for seven days to silver ions (0.01 mg/dm3) or AgNPs (0.01; 0.05; 0.1; 0.5; 1.0 mg/dm3). On the last day, the liver, testes, and ovaries were subjected to a histology analysis. In the liver, we analyzed the expression of the cat, gpx1a, gsr, sod1, and cyp1a genes. On the last day of the experiment, the lowest survival rate was found in the AgNPs 0.05 mg/dm3 group. The histological analysis showed that AgNPs and silver ions cause an increase in the area of hepatocytes. The highest proliferation index of hepatocytes was found in the AgNP 0.05 mg/dm3 group. Furthermore, AgNPs were found to interfere with spermatogenesis and oogonesis as well as reduce the expression levels of the cat, gpx1a, and sod1 genes in the liver compared with the control group. Based on the results, it can be concluded that exposure to AgNPs causes cytotoxic changes in zebrafish, activates the immune system, negatively affects the process of meiosis in the gonads, and generates oxidative stress.


Subject(s)
Metal Nanoparticles , Silver , Animals , Fertility , Homeostasis , Male , Metal Nanoparticles/toxicity , Povidone , Silver/metabolism , Silver/toxicity , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Zebrafish/genetics
4.
Cell Biosci ; 12(1): 34, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305696

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. RESULTS: A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. CONCLUSIONS: Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin-proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology.

5.
Front Cell Dev Biol ; 9: 657337, 2021.
Article in English | MEDLINE | ID: mdl-33869222

ABSTRACT

One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington's disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.

SELECTION OF CITATIONS
SEARCH DETAIL