Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phytopathology ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376958

ABSTRACT

There is limited information on the compared performance of currently used biological, serological and molecular assays with high-throughput sequencing (HTS) for viral indexing in temperate fruit crops. Here, using a range of samples of predetermined virological status, we compared two performance criteria (inclusivity and analytical sensitivity) of ELISA, molecular hybridization, RT-PCR and double-stranded RNA (dsRNA) HTS for the detection of a total of 14 viruses (10 genera) and four viroids (three genera). Using undiluted samples from individual plants, ELISA had the lowest performance, with an overall detection rate of 68.7%, followed by RT-PCR (82.5%) and HTS (90.7%, and 100% if considering only viruses). The lower performance of RT-PCR reflected the inability to amplify some isolates as a consequence of point mutations affecting primer-binding sites. In addition, HTS identified viruses that had not been identified by others assays in close to two-thirds of samples. Analysis of serial dilutions of fruit tree samples allowed to compare analytical sensitivity for various viruses. ELISA showed the lowest analytical sensitivity but RT-PCR showed higher analytical sensitivity than HTS for a majority of samples. Overall, these results confirm the superiority of HTS over biological indexing in terms of speed, and inclusivity and show that while absolute analytical sensitivity of RT-PCR tends to be higher than that of HTS, PCR inclusivity is affected by viral genetic diversity. Taken together these results make a strong case for the implementation of HTS-based approaches in fruit tree viral testing protocols supporting quarantine and certification programs.

2.
Phytopathology ; 113(2): 345-354, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35972890

ABSTRACT

Members of the genus Luteovirus are responsible for economically destructive plant diseases worldwide. Over the past few years, three luteoviruses infecting Prunus trees have been characterized. However, the biological properties, prevalence, and genetic diversity of those viruses have not yet been studied. High-throughput sequencing of samples of various wild, cultivated, and ornamental Prunus species enabled the identification of four novel species in the genus Luteovirus for which we obtained complete or nearly complete genomes. Additionally, we identified another new putative species recovered from Sequence Read Archive data. Furthermore, we conducted a survey on peach-infecting luteoviruses in eight European countries. Analyses of 350 leaf samples collected from germplasm, production orchards, and private gardens showed that peach-associated luteovirus (PaLV), nectarine stem pitting-associated virus (NSPaV), and a novel luteovirus, peach-associated luteovirus 2 (PaLV2), are present in all countries; the most prevalent virus was NSPaV, followed by PaLV. The genetic diversity of these viruses was also analyzed. Moreover, the biological indexing on GF305 peach indicator plants demonstrated that PaLV and PaLV2, like NSPaV, are transmitted by graft at relatively low rates. No clear viral symptoms have been observed in either graft-inoculated GF305 indicators or different peach tree varieties observed in an orchard. The data generated during this study provide a broader overview of the genetic diversity, geographical distribution, and prevalence of peach-infecting luteoviruses and suggest that these viruses are likely asymptomatic in peach under most circumstances.


Subject(s)
Luteovirus , Prunus , Viruses , Luteovirus/genetics , Plant Diseases , Viruses/genetics , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...