Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 130(4): 1307-1322, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32638482

ABSTRACT

AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system. METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P < 0·05). Strain L. fermentum DR9 demonstrated improved expression of SOD in bone and muscle compared to the aged rats (P < 0·05). In the evaluation of myogenesis-related genes, L. paracasei OFS 0291 and L. fermentum DR9 increased the mRNA expression of IGF-1; L. helveticus OFS 1515 and L. fermentum DR9 reduced the expression of MyoD, in contrast to the aged controls (P < 0·05). Protective effects of L. fermentum DR9 on ageing muscle were believed to be contributed by increased AMPK-α2 expression. Among the osteoclastogenesis genes studied, TNF-α expression was highly elevated in tibia of aged rats, while all three probiotics strains ameliorated the expression. Lactobacillus fermentum DR9 also reduced the expression of IL-6 and TRAP in tibia when compared to the aged rats (P < 0·05). All probiotics treatment resulted in declined proinflammatory cytokines IL-1ß in muscle and bone. CONCLUSIONS: Lactobacillus fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing. SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.


Subject(s)
Aging/drug effects , Bone and Bones/drug effects , Galactose/adverse effects , Lacticaseibacillus paracasei/physiology , Lactobacillus helveticus/physiology , Limosilactobacillus fermentum/physiology , Musculoskeletal System/drug effects , Probiotics/administration & dosage , Aging/genetics , Aging/metabolism , Animals , Bone Development/drug effects , Bone and Bones/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Musculoskeletal Development/drug effects , Musculoskeletal System/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
Benef Microbes ; 10(8): 883-892, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31965837

ABSTRACT

This study aimed to evaluate the anti-ageing effects of different strains of lactobacilli putative probiotics on an ageing rat model as induced by D-galactose and a high fat diet. Male Sprague-Dawley rats were fed with high fat diet (54% kcal fat) and injected with D-galactose daily for 12 weeks to induce ageing. The effects of putative probiotic strains on age-related impairment such as telomere length, plasma lipid peroxidation, hepatic 5'adenosine monophosphate-activated protein kinase (AMPK) expression, as well as endurance performance were evaluated. Administration of statin, Lactobacillus plantarum DR7 (LP-DR7), Lactobacillus fermentum DR9 (LF-DR9), and Lactobacillus reuteri 8513d (LR-8513d) significantly reduced the shortening of telomere and increased the expression of AMPK subunit-α1 (P<0.05). Plasma lipid peroxidation was lower (P<0.05) in groups administered with statin and LF-DR9 as compared to the control. AMPK subunit-α2 was elevated in rats administered with LP-DR7 as compared to the control (P<0.05). Using an in vivo ageing rat model, the current study has illustrated the potentials of lactobacilli putative probiotics in alleviation of age-related impairment in a strain-dependent manner.


Subject(s)
AMP-Activated Protein Kinases/genetics , Aging, Premature/metabolism , Lactobacillus/physiology , Probiotics/pharmacology , Telomere Shortening/drug effects , Aging, Premature/chemically induced , Aging, Premature/pathology , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Galactose/administration & dosage , Galactose/adverse effects , Gene Expression/drug effects , Lipid Peroxidation/drug effects , Male , Physical Endurance/drug effects , Probiotics/administration & dosage , Rats , Rats, Sprague-Dawley
3.
Benef Microbes ; 9(1): 61-70, 2018 Jan 29.
Article in English | MEDLINE | ID: mdl-29065707

ABSTRACT

This 10-months randomised, double-blind, parallel and placebo-controlled study evaluated the effects of Bifidobacterium longum BB536 on diarrhoea and/or upper respiratory illnesses in 520 healthy Malaysian pre-school children aged 2-6 years old. The subjects randomly received a one-gram sachet containing either BB536 (5×109 cfu) or placebo daily. Data analysis was performed on 219 subjects who fully complied over 10-months (placebo n=110, BB536 n=109). While BB536 did not exert significant effects against diarrhoea in children, Poisson regression with generalised estimating equations model indicated significant intergroup difference in the mean number of times of respiratory illnesses over 10 months. The duration of sore throat was reduced by 46% (P=0.018), with marginal reduction for duration of fever (reduced by 27%, P=0.084), runny nose (reduced by 15%, P=0.087) and cough (reduced by 16%, P=0.087) as compared to the placebo. Principal coordinate analysis at genus level of the gut microbiota revealed significant differences between 0 and 10 months in the BB536 group (P<0.01) but not in placebo group (P>0.05). The abundance of the genus Faecalibacterium which is associated with anti-inflammatory and immuno-modulatory properties was significantly higher in the BB536 group (P<0.05) compared to the placebo group. Altogether, our present study illustrated the potential protective effects of BB536 against upper respiratory illnesses in pre-school Malaysian children, with gut microbiota modulating properties.


Subject(s)
Bifidobacterium longum/physiology , Gastrointestinal Tract/microbiology , Microbiota/drug effects , Probiotics/pharmacology , Respiratory Tract Infections/microbiology , Child , Child, Preschool , Double-Blind Method , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Healthy Volunteers , Humans , Malaysia , Male , Multivariate Analysis , Placebos , Respiratory Tract Infections/prevention & control
6.
Hong Kong Med J ; 18 Suppl 2: 12-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22311354

ABSTRACT

1. Hyper-induction of cytokines and chemokines was found in human blood macrophages infected with the avian influenza H5N1 and H9N2/G1 viruses, as compared to those infected with human influenza H1N1 virus. 2. IRF3 played a significant role in the hyperinduction of cytokines including IFN-ß, IFN-λ1,IFN-α subtypes, MCP-1, and TNF-α, and also played a part in subsequent cytokine-induced cell signalling cascades. 3. Compared with H1N1 viruses, avian influenza viruses including H5N1/97 and its precursors triggered a caspase-mediated but delayed apoptotic response in human macrophages. 4. Therapies that can minimise immunopathology-associated dysregulation of innate immunity without impairing effective host defence may be valuable adjuncts to antiviral therapy.


Subject(s)
Apoptosis , Cytokines/genetics , Influenza A Virus, H5N1 Subtype , Influenza, Human/metabolism , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , RNA, Messenger/metabolism , Caspase 3/metabolism , Cells, Cultured , Cytokines/biosynthesis , Gene Expression Regulation , Humans , Influenza A Virus, H1N1 Subtype , Interferon Regulatory Factor-3/genetics , Interferon-beta/biosynthesis , Interferon-beta/genetics , Interferons , Interleukins/biosynthesis , Interleukins/genetics , Macrophages/enzymology , Macrophages/virology , Poly(ADP-ribose) Polymerases/metabolism , RNA, Small Interfering , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Up-Regulation/genetics
7.
Biomed Pharmacother ; 61(9): 520-6, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17913445

ABSTRACT

Epstein--Barr virus latent infection is associated with human malignancies including Burkitt's lymphoma, gastric carcinoma and the highly invasive nasopharyngeal carcinoma (NPC). Increased expression of EBV latent membrane protein 1, LMP1, is correlated with tumor progression and metastasis in NPC. LMP1 induces cellular proteins including cytokines and matrix metalloproteinases (e.g., MMP1, MMP2 and MMP9). MMPs are endopeptidases involved in the degradation of extracellular matrix proteins; and their upregulation in cancer implicates their potential role in tumor metastasis. In light of the role of LMP1 in cytokine dysregulation and the fact that MMPs are regulated by cytokines, we examined whether LMP1 promotes NPC metastasis via the induction of MMPs. To delineate the oncogenic role of LMP1 in NPC, we first investigated the induction of MMP1, MMP2, MMP3 and MMP9 in LMP1-positive NPC tumor samples (n=15) by quantitative RT-PCR. We showed a significant induction of MMP1 and MMP3 transcripts in the EBV LMP1-positive NPC tissues, compared with biopsies obtained from the adjacent non-tumor tissues. To investigate the role of LMP1 in MMP expression in NPC, we cloned the LMP1 gene from NPC samples and transiently expressed it in MRC5 cells (human lung fibroblasts). Following transfection, a time-dependent elevation of endogenous MMP3 expression was found in the LMP1-transfectants by quantitative RT-PCR and Western analysis. Taken together, we observed that MMP3 is upregulated in LMP1-positive NPC tumors and LMP1-expression in fibroblasts is associated with MMP3 and cytokine expression. Our results suggest that LMP1 may contribute to invasiveness of NPC cells via the expression of MMP3 in fibroblasts.


Subject(s)
Carcinoma/metabolism , Matrix Metalloproteinases/biosynthesis , Nasopharyngeal Neoplasms/metabolism , Viral Matrix Proteins/pharmacology , Adult , Aged , Blotting, Western , Carcinoma/pathology , Cells, Cultured , Cloning, Molecular , Disease Progression , Enzyme Induction/drug effects , Female , Humans , Immunohistochemistry , Male , Middle Aged , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , RNA/biosynthesis , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Viral Matrix Proteins/genetics , Viral Matrix Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...