Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Neural Regen Res ; 19(9): 1883-1884, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227509
2.
Signal Transduct Target Ther ; 8(1): 404, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37867176

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-ß precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-ß and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.


Subject(s)
Alzheimer Disease , Exosomes , Mice , Animals , Alzheimer Disease/pathology , Exosomes/genetics , Exosomes/metabolism , Nerve Tissue Proteins/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cognition , Neurons/pathology
3.
Biochem Soc Trans ; 51(4): 1647-1659, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37387352

ABSTRACT

Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-ß peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Animals , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurogenesis , Mammals/metabolism
4.
Neural Regen Res ; 18(10): 2186-2187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056129
5.
FASEB J ; 36(11): e22594, 2022 11.
Article in English | MEDLINE | ID: mdl-36250347

ABSTRACT

Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration. Insulin is a pivotal hormone in the regulation of glucose homeostasis. There is increasing evidence for the neurotrophic functions of insulin, including the induction of neurite outgrowth. However, the associated mechanism remains elusive. Here, we demonstrate that insulin potentiates neurite outgrowth mediated by the small GTPases ADP-ribosylation factor 6 (ARF6) and Ras-related C3 botulinum toxin substrate 1 (Rac1) through the neuronal adaptor FE65. Moreover, insulin enhances atypical protein kinase Cι/λ (PKCι/λ) activation and FE65 phosphorylation at serine 459 (S459) in neurons and mouse brains. In vitro and cellular assays show that PKCι/λ phosphorylated FE65 at S459. Consistently, insulin potentiates FE65 S459 phosphorylation only in the presence of PKCι/λ. Phosphomimetic studies show that an FE65 S459E mutant potently activates ARF6, Rac1, and neurite outgrowth. Notably, this phosphomimetic mutation enhances the FE65-ARF6 interaction, a process that promotes ARF6-Rac1-mediated neurite outgrowth. Likewise, insulin treatment and PKCι/λ overexpression potentiate the FE65-ARF6 interaction. Conversely, PKCι/λ knockdown suppresses the stimulatory effect of FE65 on ARF6-Rac1-mediated neurite outgrowth. The effect of insulin on neurite outgrowth is also markedly attenuated in PKCι/λ knockdown neurons, in the presence and absence of FE65. Our findings reveal a novel mechanism linking insulin with ARF6-Rac1-dependent neurite extension through the PKCι/λ-mediated phosphorylation of FE65.


Subject(s)
Insulin , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , rac1 GTP-Binding Protein , ADP-Ribosylation Factor 6 , Animals , Glucose/metabolism , Insulin/metabolism , Insulin/pharmacology , Mice , Neurites/metabolism , Neuronal Outgrowth/physiology , Neurons/metabolism , Neuropeptides/metabolism , Phosphorylation , Protein Kinase C/metabolism , Serine/metabolism , rac1 GTP-Binding Protein/metabolism
6.
Open Biol ; 12(9): 220071, 2022 09.
Article in English | MEDLINE | ID: mdl-36168805

ABSTRACT

ADP-ribosylation factor 6 (ARF6) is a small GTPase that has a variety of neuronal functions including stimulating neurite outgrowth, a crucial process for the establishment and maintenance of neural connectivity. As impaired and atrophic neurites are often observed in various brain injuries and neurological diseases, understanding the intrinsic pathways that stimulate neurite outgrowth may provide insights into developing strategies to trigger the reconnection of injured neurons. The neuronal adaptor FE65 has been shown to interact with ARF6 and potentiate ARF6-mediated neurite outgrowth. However, the precise mechanism that FE65 activates ARF6 remains unclear, as FE65 does not possess a guanine nucleotide exchange factor (GEF) domain/function. Here, we show that FE65 interacts with the ARF6 GEF, namely the ARF nucleotide-binding site opener (ARNO). Moreover, a complex consisting of ARNO, ARF6 and FE65 is detected. Notably, FE65 potentiates the stimulatory effect of ARNO on ARF6-mediated neurite outgrowth, and the effect of FE65 is abrogated by an FE65 mutation that disrupts FE65-ARNO interaction. Additionally, the intramolecular interaction for mediating the autoinhibited conformation of ARNO is attenuated by FE65. Moreover, FE65 potentiates the effects of wild-type ARNO, but not the monomeric mutant, suggesting an association between FE65 and ARNO dimerization. Collectively, we demonstrate that FE65 binds to and activates ARNO and, consequently, potentiates ARF6-mediated neurite outgrowth.


Subject(s)
ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Neuronal Outgrowth , Neurons/metabolism , Nucleotides/metabolism
7.
Front Cell Dev Biol ; 10: 900321, 2022.
Article in English | MEDLINE | ID: mdl-36072338

ABSTRACT

Cnidarians including sea anemones, corals, hydra, and jellyfishes are a group of animals well known for their regeneration capacity. However, how non-coding RNAs such as microRNAs (also known as miRNAs) contribute to cnidarian tissue regeneration is poorly understood. Here, we sequenced and assembled the genome of the sea anemone Exaiptasia pallida collected in Hong Kong waters. The assembled genome size of E. pallida is 229.21 Mb with a scaffold N50 of 10.58 Mb and BUSCO completeness of 91.1%, representing a significantly improved genome assembly of this species. The organization of ANTP-class homeobox genes in this anthozoan further supported the previous findings in jellyfishes, where most of these genes are mainly located on three scaffolds. Tentacles of E. pallida were excised, and both mRNA and miRNA were sequenced at 9 time points (0 h, 6 h, 12 h, 18 h, 1 day, 2, 3, 6, and 8 days) from regenerating tentacles. In addition to the Wnt signaling pathway and homeobox genes that are shown to be likely involved in tissue regeneration as in other cnidarians, we have shown that GLWamide neuropeptides, and for the first time sesquiterpenoid pathway genes could potentially be involved in the late phase of cnidarian tissue regeneration. The established sea anemone model will be useful for further investigation of biology and evolution in, and the effect of climate change on this important group of animals.

8.
Nat Commun ; 13(1): 3010, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637228

ABSTRACT

Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures.


Subject(s)
Arthropods , Gene Transfer, Horizontal , Animals , Arthropods/genetics , Chilopoda , Genome/genetics , Phylogeny
9.
J Vis Exp ; (172)2021 06 30.
Article in English | MEDLINE | ID: mdl-34279508

ABSTRACT

Endosomal trafficking is an essential cellular process that regulates a broad range of biological events. Proteins are internalized from the plasma membrane and then transported to the early endosomes. The internalized proteins could be transited to the lysosome for degradation or recycled back to the plasma membrane. A robust endocytic recycling pathway is required to balance the removal of membrane materials from endocytosis. Various proteins are reported to regulate the pathway, including ADP-ribosylation factor 6 (ARF6). Density gradient ultracentrifugation is a classical method for cell fractionation. After the centrifugation, organelles are sedimented at their isopycnic surface. The fractions are collected and used for other downstream applications. Described here is a protocol to obtain a recycling endosome-containing fraction from transfected mammalian cells using density gradient ultracentrifugation. The isolated fractions were subjected to standard Western blotting for analyzing their protein contents. By employing this method, we identified that the plasma membrane targeting of engulfment and cell motility 1 (ELMO1), a Ras-related C3 botulinum toxin substrate 1 (Rac1) guanine nucleotide exchange factor, is through ARF6-mediated endocytic recycling.


Subject(s)
Endocytosis , Endosomes , Animals , Cell Membrane/metabolism , Endosomes/metabolism , Protein Transport , Ultracentrifugation
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33947817

ABSTRACT

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Subject(s)
Apoptosis/genetics , DNA Damage , Huntington Disease/genetics , Peptides/genetics , Pyrophosphatases/genetics , RNA/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Apoptosis/drug effects , Benzamidines/metabolism , Benzamidines/pharmacology , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/prevention & control , Mice, Inbred C57BL , Mice, Transgenic , Molecular Dynamics Simulation , Pyrophosphatases/metabolism , RNA/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
FASEB J ; 34(12): 16397-16413, 2020 12.
Article in English | MEDLINE | ID: mdl-33047393

ABSTRACT

Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.


Subject(s)
ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Neuronal Outgrowth/physiology , Neurons/metabolism , Nuclear Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , ADP-Ribosylation Factor 6 , Animals , CHO Cells , COS Cells , Cell Line , Cell Membrane/metabolism , Chlorocebus aethiops , Cricetulus , Endosomes/metabolism , HEK293 Cells , Humans , Protein Transport/physiology , Signal Transduction/physiology
12.
Mol Biol Evol ; 37(10): 2955-2965, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32521021

ABSTRACT

A striking feature of micro-RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro-RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro-RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro-RNA cluster members were also constructed. Expression of individual micro-RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro-RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro-RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro-RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro-RNAs. Considered together, the micro-RNA targets and the evolutionary ages of each micro-RNA in the cluster demonstrate the importance of micro-RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro-RNAs. Key words: micro-RNA, cluster, evolution.


Subject(s)
Drosophila melanogaster/genetics , Evolution, Molecular , MicroRNAs/genetics , Animals , Base Sequence , Conserved Sequence , Drosophila melanogaster/metabolism , Female , Male , MicroRNAs/metabolism , Multigene Family , Selection, Genetic
14.
J Vis Exp ; (152)2019 10 19.
Article in English | MEDLINE | ID: mdl-31680677

ABSTRACT

Neurite outgrowth is a fundamental event in the formation of the neural circuits during nervous system development. Severe neurite damage and synaptic dysfunction occur in various neurodegenerative diseases and age-related degeneration. Investigation of the mechanisms that regulate neurite outgrowth would not only shed valuable light on brain developmental processes but also on such neurological disorders. Due to the low transfection efficiency, it is currently challenging to study the effect of a specific protein on neurite outgrowth in primary mammalian neurons. Here, we describe a simple method for the investigation of neurite outgrowth by the co-transfection of primary rat cortical neurons with EGFP and a protein of interest (POI). This method allows the identification of POI transfected neurons through the EGFP signal, and thus the effect of the POI on neurite outgrowth can be determined precisely. This EGFP-based assay provides a convenient approach for the investigation of pathways regulating neurite outgrowth.


Subject(s)
Green Fluorescent Proteins , Neuronal Outgrowth/physiology , Neurons/physiology , Animals , Cells, Cultured , Female , Nerve Tissue Proteins/physiology , Nuclear Proteins/physiology , Rats , Rats, Sprague-Dawley
15.
FASEB J ; 33(11): 12019-12035, 2019 11.
Article in English | MEDLINE | ID: mdl-31373844

ABSTRACT

Amyloid-ß (Aß) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aß to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aß generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aß levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aß production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aß. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aß production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aß generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the ß1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aß production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-ß generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Protein Kinase C/metabolism , Protein Processing, Post-Translational , Threonine/metabolism , Alzheimer Disease/metabolism , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , HEK293 Cells , Humans , Phosphorylation , Protein Binding
16.
Mol Ther Nucleic Acids ; 16: 172-185, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30889483

ABSTRACT

One drug, two diseases is a rare and economical therapeutic strategy that is highly desirable in the pharmaceutical industry. We previously reported a 21-amino acid peptide named beta-structured inhibitor for neurodegenerative diseases (BIND) that can effectively inhibit expanded CAG trinucleotide toxicity in polyglutamine (polyQ) diseases. Here we report that BIND also effectively inhibits GGGGCC repeat-mediated neurodegeneration in vitro and in vivo. When fused with a cell-penetrating peptide derived from the transactivator of transcription (TAT) protein of the HIV, TAT-BIND reduces cell death, formation of GGGGCC RNA foci, and levels of poly-GR, poly-GA, and poly-GP dipeptide proteins in cell models of C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS-FTD). We showed that TAT-BIND disrupts the interaction between GGGGCC RNA and nucleolin protein, restores rRNA maturation, and inhibits mislocalization of nucleolin and B23, which eventually suppresses nucleolar stress in C9ALS-FTD. In a Drosophila model of C9ALS-FTD, TAT-BIND suppresses retinal degeneration, rescues climbing ability, and extends the lifespan of flies. In contrast, TAT-BIND has no effect on UAS-poly-glycine-arginine (poly-GR)100-expressing flies, which generate only poly-GR protein toxicity, indicating BIND ameliorates toxicity in C9ALS-FTD models via a r(GGGGCC)exp-dependent inhibitory mechanism. Our findings demonstrated that, apart from being a potential therapeutic for polyQ diseases, BIND is also a potent peptidylic inhibitor that suppresses expanded GGGGCC RNA-mediated neurodegeneration, highlighting its potential application in C9ALS-FTD treatment.

18.
J Biol Chem ; 294(1): 372-378, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30409901

ABSTRACT

The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogens such as Mycobacterium tuberculosis However, to date, the only RimP structure available is the NMR structure of the ortholog in another bacterial pathogen, Streptococcus pneumoniae Here, we report a 2.2 Å resolution crystal structure of MSMEG_2624, the RimP ortholog in the close M. tuberculosis relative Mycobacterium smegmatis, and using in vitro binding assays, we show that MSMEG_2624 interacts with the small ribosomal protein S12, also known as RpsL. Further analyses revealed that the conserved residues in the linker region between the N- and C-terminal domains of MSMEG_2624 are essential for binding to RpsL. However, neither of the two domains alone was sufficient to form strong interactions with RpsL. More importantly, the linker region was essential for in vivo ribosomal biogenesis. Our study provides critical mechanistic insights into the role of RimP in ribosome biogenesis. We anticipate that the MSMEG_2624 crystal structure has the potential to be used for drug design to manage M. tuberculosis infections.


Subject(s)
Bacterial Proteins , Mycobacterium smegmatis , Ribosomal Proteins , Ribosomes , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Escherichia coli Proteins , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/metabolism , Protein Binding , Protein Domains , Ribosomal Protein S9 , Ribosomal Proteins/biosynthesis , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Ribosomes/metabolism , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/metabolism
19.
J Biol Chem ; 294(8): 2757-2770, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30593503

ABSTRACT

Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.


Subject(s)
Autophagy , Disease Models, Animal , Furans/pharmacology , Inclusion Bodies/pathology , Neurodegenerative Diseases/prevention & control , Neurons/pathology , Peptides/metabolism , Animals , Cytoprotection , Drosophila melanogaster/physiology , Furans/chemistry , Humans , Inclusion Bodies/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/metabolism , Peptides/chemistry , Rats
20.
Bio Protoc ; 9(23): e3449, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-33654944

ABSTRACT

Intramolecular interaction is a common mechanism that regulates protein activities. Conventionally, such interactions are investigated by classical in vitro biochemical assays. Here, we describe a protocol for studying the intramolecular interaction of cell motility and engulfment 1 (ELMO1) in mammalian cells by using proximity ligation assay (PLA). PLA is a specific and sensitive method that allows the observation of interacting proteins by target-specific antibody detection coupled to rolling circle amplification. ELMO1 is the regulatory subunit of ELMO1-dedicator of cytokinesis 180 (DOCK180) bipartite Rac1 guanine nucleotide exchange factor (GEF) which adopts a closed autoinhibitory conformation via an intramolecular interaction of its N-terminal ELMO inhibitory domain (EID) and C-terminal ELMO autoregulatory domain (EAD). In the assay, PLA signals are detected in cells transfected with ELMO11-315 and ELMO1315-727 fragments. Moreover, overexpression of FE65, a neuronal adaptor which has been shown to disrupt ELMO1 intramolecular interaction, reduces the PLA signals of the two ELMO1 fragments significantly. Together, our results demonstrate that PLA can be employed for studying protein intramolecular interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...