Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 96(8): 1462-86, 2009 Aug.
Article in English | MEDLINE | ID: mdl-21628293

ABSTRACT

The unique properties of tree building in Arecaceae strongly constrain their architectural lability. Potentially compensating for this limitation, the extensive diversification of leaf anatomical structure within palms involves many characters whose alternate states may confer disparate mechanical or physiological capabilities. In the context of a recent global palm phylogeny, we analyzed the evolution of 10 such lamina anatomical characters and leaf morphology of 161 genera, conducting parsimony and maximum likelihood ancestral state reconstructions, as well as tests of correlated evolution. Lamina morphology evolves independently from anatomy. Although many characters do optimize as synapomorphic for major clades, anatomical evolution is highly homoplasious. Nevertheless, it is not random: analyses indicate the recurrent evolution of different cohorts of correlated character states. Notable are two surface layer (epidermis and hypodermis) types: (1) a parallel-laminated type of rectangular epidermal cells with sinuous anticlinal walls, with fibers present in the hypodermis and (2) a cross-laminated type of hexagonal cells in both layers. Correlated with the cross-laminated type is a remarkable decrease in the volume fraction of fibers, accompanied by changes in the architecture and sheath cell type of the transverse veins. We discuss these and other major patterns of anatomical evolution in relation to their biomechanical and ecophysiological significance.

2.
Plant Cell ; 18(12): 3564-75, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17172352

ABSTRACT

Amino acids are not only fundamental protein constituents but also serve as precursors for many essential plant metabolites. Although amino acid biosynthetic pathways in plants have been identified, pathway regulation, catabolism, and downstream metabolite partitioning remain relatively uninvestigated. Conversion of Thr to Gly and acetaldehyde by Thr aldolase (EC 4.1.2.5) was only recently shown to play a role in plant amino acid metabolism. Whereas one Arabidopsis thaliana Thr aldolase (THA1) is expressed primarily in seeds and seedlings, the other (THA2) is expressed in vascular tissue throughout the plant. Metabolite profiling of tha1 mutants identified a >50-fold increase in the seed Thr content, a 50% decrease in seedling Gly content, and few other significant metabolic changes. By contrast, homozygous tha2 mutations cause a lethal albino phenotype. Rescue of tha2 mutants and tha1 tha2 double mutants by overproduction of feedback-insensitive Thr deaminase (OMR1) shows that Gly formation by THA1 and THA2 is not essential in Arabidopsis. Seed-specific expression of feedback-insensitive Thr deaminase in both tha1 and tha2 Thr aldolase mutants greatly increases seed Ile content, suggesting that these two Thr catabolic enzymes compete for a common substrate pool.


Subject(s)
Aldehyde-Lyases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Glycine Hydroxymethyltransferase/metabolism , Threonine Dehydratase/metabolism , Aldehyde-Lyases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cloning, Molecular , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Essential , Genes, Recessive , Glucuronidase/metabolism , Glycine Hydroxymethyltransferase/genetics , Isoleucine/metabolism , Mutation/genetics , Phenotype , Seedlings/enzymology , Seeds/enzymology , Substrate Specificity , Threonine/chemistry , Threonine/metabolism , Yeasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...