Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
1.
Hear Res ; 443: 108964, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38277882

ABSTRACT

Data from non-human primates can help extend observations from non-primate species to humans. Here we report measurements on the auditory nerve of macaque monkeys in the context of a controversial topic important to human hearing. A range of techniques have been used to examine the claim, which is not generally accepted, that human frequency tuning is sharper than traditionally thought, and sharper than in commonly used animal models. Data from single auditory-nerve fibers occupy a pivotal position to examine this claim, but are not available for humans. A previous study reported sharper tuning in auditory-nerve fibers of macaque relative to the cat. A limitation of these and other single-fiber data is that frequency selectivity was measured with tonal threshold-tuning curves, which do not directly assess spectral filtering and whose shape is sharpened by cochlear nonlinearity. Our aim was to measure spectral filtering with wideband suprathreshold stimuli in the macaque auditory nerve. We obtained responses of single nerve fibers of anesthetized macaque monkeys and cats to a suprathreshold, wideband, multicomponent stimulus designed to allow characterization of spectral filtering at any cochlear locus. Quantitatively the differences between the two species are smaller than in previous studies, but consistent with these studies the filters obtained show a trend of sharper tuning in macaque, relative to the cat, for fibers in the basal half of the cochlea. We also examined differences in group delay measured on the phase data near the characteristic frequency versus in the low-frequency tail. The phase data are consistent with the interpretation of sharper frequency tuning in monkey in the basal half of the cochlea. We conclude that use of suprathreshold, wide-band stimuli supports the interpretation of sharper frequency selectivity in macaque nerve fibers relative to the cat, although the difference is less marked than apparent from the assessment with tonal threshold-based data.


Subject(s)
Cochlea , Cochlear Nerve , Animals , Haplorhini , Cochlear Nerve/physiology , Cochlea/physiology , Hearing/physiology , Macaca , Auditory Threshold/physiology , Acoustic Stimulation
2.
Cardiovasc Res ; 118(2): 357-371, 2022 01 29.
Article in English | MEDLINE | ID: mdl-34358290

ABSTRACT

Regular aerobic exercise (RAEX) elicits several positive adaptations in all organs and tissues of the body, culminating in improved health and well-being. Indeed, in over half a century, many studies have shown the benefit of RAEX on cardiovascular outcome in terms of morbidity and mortality. RAEX elicits a wide range of functional and structural adaptations in the heart and its coronary circulation, all of which are to maintain optimal myocardial oxygen and nutritional supply during increased demand. Although there is no evidence suggesting that oxidative metabolism is limited by coronary blood flow (CBF) rate in the normal heart even during maximal exercise, increased CBF and capillary exchange capacities have been reported. Adaptations of coronary macro- and microvessels include outward remodelling of epicardial coronary arteries, increased coronary arteriolar size and density, and increased capillary surface area. In addition, there are adjustments in the neural and endothelial regulation of coronary macrovascular tone. Similarly, there are several adaptations at the level of microcirculation, including enhanced (such as nitric oxide mediated) smooth muscle-dependent pressure-induced myogenic constriction and upregulated endothelium-dependent/shear-stress-induced dilation, increasing the range of diameter change. Alterations in the signalling interaction between coronary vessels and cardiac metabolism have also been described. At the molecular and cellular level, ion channels are key players in the local coronary vascular adaptations to RAEX, with enhanced activation of influx of Ca2+ contributing to the increased myogenic tone (via voltage-gated Ca2+ channels) as well as the enhanced endothelium-dependent dilation (via TRPV4 channels). Finally, RAEX elicits a number of beneficial effects on several haemorheological variables that may further improve CBF and myocardial oxygen delivery and nutrient exchange in the microcirculation by stabilizing and extending the range and further optimizing the regulation of myocardial blood flow during exercise. These adaptations also act to prevent and/or delay the development of coronary and cardiac diseases.


Subject(s)
Cardiovascular Diseases/prevention & control , Coronary Circulation , Coronary Vessels/physiopathology , Exercise , Healthy Lifestyle , Hemodynamics , Microcirculation , Microvessels/physiopathology , Adaptation, Physiological , Animals , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/metabolism , Heart Disease Risk Factors , Humans , Microvessels/diagnostic imaging , Microvessels/metabolism , Prognosis , Protective Factors , Risk Assessment , Risk Reduction Behavior
3.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: mdl-34027891

ABSTRACT

Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer's disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aß40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.


Subject(s)
Amyloid/metabolism , Cerebrovascular Disorders , Heart Failure , Metabolic Diseases , Animals , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/physiopathology , Diet, High-Fat , Disease Models, Animal , Female , Heart Failure/metabolism , Heart Failure/physiopathology , Metabolic Diseases/metabolism , Metabolic Diseases/physiopathology , Signal Transduction , Swine
4.
J Pathol ; 254(5): 589-605, 2021 08.
Article in English | MEDLINE | ID: mdl-33999411

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model. Here we investigated structural and functional changes in the vascular smooth muscle and endothelium of the canine DMD model. The expression of dystrophin and endothelial nitric oxide synthase (eNOS), neuronal NOS (nNOS), and the structure and function of the femoral artery from 15 normal and 16 affected adult dogs were evaluated. Full-length dystrophin was detected in the endothelium and smooth muscle in normal but not affected dog arteries. Normal arteries lacked nNOS but expressed eNOS in the endothelium. NOS activity and eNOS expression were reduced in the endothelium of dystrophic dogs. Dystrophin deficiency resulted in structural remodeling of the artery. In affected dogs, the maximum tension induced by vasoconstrictor phenylephrine and endothelin-1 was significantly reduced. In addition, acetylcholine-mediated vasorelaxation was significantly impaired, whereas exogenous nitric oxide-induced vasorelaxation was significantly enhanced. Our results suggest that dystrophin plays a crucial role in maintaining the structure and function of vascular endothelium and smooth muscle in large mammals. Vascular defects may contribute to DMD pathogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Dystrophin/deficiency , Endothelium, Vascular/physiopathology , Muscle, Smooth, Vascular/physiopathology , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Animals , Disease Models, Animal , Dogs
5.
Epidemiol Infect ; 147: e270, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31511109

ABSTRACT

We investigated a large multistate outbreak that occurred in the United States in 2015-2016. Epidemiologic, laboratory, and traceback studies were conducted to determine the source of the infections. We identified 907 case-patients from 40 states with illness onset dates ranging from July 3, 2015 to March 2, 2016. Sixty-three percent of case-patients reported consuming cucumbers in the week before illness onset. Ten illness sub-clusters linked to events or purchase locations were identified. All sub-clusters investigated received cucumbers from a single distributor which were sourced from a single grower in Mexico. Seventy-five cucumber samples were collected, 19 of which yielded the outbreak strain. Whole genome sequencing performed on 154 clinical isolates and 19 cucumber samples indicated that the sequenced isolates were closely related genetically to one another. This was the largest US foodborne disease outbreak in the last ten years and the third largest in the past 20 years. This was at least the fifth multistate outbreak caused by contaminated cucumbers since 2010. The outbreak is noteworthy because a recall was issued only 17 days after the outbreak was identified, which allowed for the removal of the contaminated cucumbers still available in commerce, unlike previous cucumber associated outbreaks. The rapid identification and response of multiple public health agencies resulted in preventing this from becoming an even larger outbreak.


Subject(s)
Cucumis sativus/microbiology , Disease Outbreaks , Foodborne Diseases/epidemiology , Salmonella Infections/epidemiology , Salmonella/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cluster Analysis , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Typing , Salmonella/classification , Salmonella/genetics , United States/epidemiology , Whole Genome Sequencing , Young Adult
6.
Am J Physiol Endocrinol Metab ; 317(4): E605-E616, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31361543

ABSTRACT

Dysregulated mitochondrial quality control leads to mitochondrial functional impairments that are central to the development and progression of hepatic steatosis to nonalcoholic steatohepatitis (NASH). Here, we identify hepatocellular localized endothelial nitric oxide synthase (eNOS) as a novel master regulator of mitochondrial quality control. Mice lacking eNOS were more susceptible to Western diet-induced hepatic inflammation and fibrosis in conjunction with decreased markers of mitochondrial biogenesis and turnover. The hepatocyte-specific influence was verified via magnetic activated cell sorting purified primary hepatocytes and in vitro siRNA-induced knockdown of eNOS. Hepatic mitochondria from eNOS knockout mice revealed decreased markers of mitochondrial biogenesis (PPARγ coactivator-1α, mitochondrial transcription factor A) and autophagy/mitophagy [BCL-2-interacting protein-3 (BNIP3), 1A/1B light chain 3B (LC3)], suggesting decreased mitochondrial turnover rate. eNOS knockout in primary hepatocytes exhibited reduced fatty acid oxidation capacity and were unable to mount a normal BNIP3 response to a mitophagic challenge compared with wild-type mice. Finally, we demonstrate that eNOS is required in primary hepatocytes to induce activation of the stress-responsive transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). Thus, our data demonstrate that eNOS is an important regulator of hepatic mitochondrial content and function and NASH susceptibility.


Subject(s)
Diet, Western/adverse effects , Mitochondria, Liver/metabolism , Nitric Oxide Synthase Type III/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Autophagy/genetics , Gene Knockdown Techniques , Hepatocytes/pathology , Male , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Mitophagy , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/genetics , Primary Cell Culture , RNA, Small Interfering/pharmacology
7.
Exerc Sport Sci Rev ; 47(2): 66-74, 2019 04.
Article in English | MEDLINE | ID: mdl-30883470

ABSTRACT

We present the hypothesis that exercise-induced hyperemia, perhaps through vascular shear stress, represents an important factor responsible for the effects of physical activity (PA) on vascular insulin sensitivity. Specifically, we postulate PA involving the greatest amount of skeletal muscle mass and the greatest central neural recruitment maximizes perfusion and consequently enhances vascular insulin sensitivity in the skeletal muscle and brain.


Subject(s)
Brain/physiology , Exercise , Insulin Resistance , Muscle, Skeletal/physiology , Endothelium, Vascular/physiology , Humans , Stress, Mechanical
8.
Microcirculation ; 26(6): e12539, 2019 08.
Article in English | MEDLINE | ID: mdl-30821858

ABSTRACT

OBJECTIVE: Swine with familial hypercholesterolemia (FH) exhibit attenuated exercise-induced systemic vasodilation that is restored by phosphodiesterase 5 (PDE5) inhibition. Whether the impacts of FH and PDE5 inhibition to impair and restore exercise-induced vasodilation, respectively, results from tissue-specific or generalized effects remains unclear. Thus, we hypothesized that FH induces generalized impairment of skeletal muscle vasodilation that would be alleviated by PDE5 inhibition. METHODS: Systemic vascular responses to exercise were assessed in chronically instrumented normal and FH swine before and after PDE5 inhibition with EMD360527. Skeletal muscle and organ blood flows and conductances were determined via the microsphere technique. RESULTS: As previously reported, vs normal swine, FH swine have pronounced elevation of total cholesterol and impaired exercise-induced vasodilation that is restored by PDE5 inhibition. Blood flows to several, not all, skeletal muscle vascular beds were severely impaired by FH associated with reduced blood flow to many visceral organs. PDE5 inhibition differentially impacted skeletal muscle and organ blood flows in normal and FH swine. CONCLUSIONS: These data indicate that FH induces regional, not generalized, vasomotor dysfunction and that FH and normal swine exhibit unique tissue blood flow responses to PDE5 inhibition thereby adding to accumulating evidence of vascular bed-specific dysfunction in co-morbid conditions.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Hyperlipoproteinemia Type II , Muscle, Skeletal , Phosphodiesterase 5 Inhibitors/pharmacology , Physical Conditioning, Animal , Vasodilation/drug effects , Animals , Blood Flow Velocity/drug effects , Hyperlipoproteinemia Type II/enzymology , Hyperlipoproteinemia Type II/pathology , Hyperlipoproteinemia Type II/physiopathology , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Swine
9.
J Appl Physiol (1985) ; 125(1): 86-96, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29596016

ABSTRACT

Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.


Subject(s)
Aorta/physiopathology , Coronary Vessels/physiopathology , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Physical Conditioning, Animal/physiology , Swine, Miniature/physiology , Animals , Aorta/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Coronary Vessels/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Hemodynamics/physiology , Male , Stroke Volume/physiology , Swine , Swine, Miniature/metabolism , Ventricular Function, Left/physiology
10.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R252-R264, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29141949

ABSTRACT

Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cß (PKCß). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCß inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.


Subject(s)
Insulin Resistance , Insulin/blood , Microvessels/metabolism , Muscle, Skeletal/blood supply , Pediatric Obesity/metabolism , Prefrontal Cortex/blood supply , Vasodilation , Age Factors , Animals , Disease Models, Animal , Disease Progression , Female , Male , Microvessels/drug effects , Microvessels/physiopathology , Pediatric Obesity/physiopathology , Phosphorylation , Protein Kinase C beta/antagonists & inhibitors , Protein Kinase C beta/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Swine , Swine, Miniature , Time Factors , Vasodilation/drug effects
11.
J Am Heart Assoc ; 6(11)2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29089345

ABSTRACT

BACKGROUND: Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. METHODS AND RESULTS: Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups (P<0.05), with significant impairments in the AB-OVX group (P<0.05). Resting carotid artery ß stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group (P<0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups (P<0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group (P<0.05), and vasodilation to the Ca2+-activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups (P<0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca2+-activated potassium channel α-subunit protein was increased in AB groups (P<0.05). CONCLUSIONS: Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca2+-activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones.


Subject(s)
Aorta/surgery , Behavior, Animal , Cerebral Arteries/metabolism , Cerebrovascular Disorders/metabolism , Cognition Disorders/metabolism , Cognition , Gonadal Steroid Hormones/deficiency , Heart Failure/metabolism , Neuropeptide Y/metabolism , Nitric Oxide/metabolism , Ovariectomy , Pia Mater/blood supply , Potassium Channels, Calcium-Activated/metabolism , Animals , Aorta/physiopathology , Arterial Pressure , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Cerebrovascular Disorders/psychology , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Cognition Disorders/psychology , Disease Models, Animal , Female , Heart Failure/etiology , Heart Failure/physiopathology , Ligation , Signal Transduction , Spatial Memory , Swine , Swine, Miniature , Time Factors , Vasoconstriction , Vasodilation
12.
J Appl Physiol (1985) ; 122(4): 1040-1050, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28183819

ABSTRACT

This study tested the hypotheses that obesity-induced decrements in insulin-stimulated cerebrovascular vasodilation would be normalized with acute endothelin-1a receptor antagonism and that treatment with a physical activity intervention restores vasoreactivity to insulin through augmented nitric oxide synthase (NOS)-dependent dilation. Otsuka Long-Evans Tokushima Fatty rats were divided into the following groups: 20 wk old food controlled (CON-20); 20 wk old free food access (model of obesity, OB-20); 40 wk old food controlled (CON-40); 40 wk old free food access (OB-40); and 40 wk old free food access+RUN (RUN-40; wheel-running access from 20 to 40 wk). Rats underwent Barnes maze testing and a euglycemic hyperinsulinemic clamp (EHC). In the 40-wk cohort, cerebellum and hippocampus blood flow (BF) were examined (microsphere infusion). Vasomotor responses (pressurized myography) to insulin were assessed in untreated, endothelin-1a receptor antagonism, and NOS inhibition conditions in posterior cerebral arteries. Insulin-stimulated vasodilation was attenuated in the OB vs. CON and RUN groups (P ≤ 0.04). Dilation to insulin was normalized with endothelin-1a receptor antagonism in the OB groups (between groups, P ≥ 0.56), and insulin-stimulated NOS-mediated dilation was greater in the RUN-40 vs. OB-40 group (P < 0.01). At 40 wk of age, cerebellum BF decreased during EHC in the OB-40 group (P = 0.02) but not CON or RUN groups (P ≥ 0.36). Barnes maze testing revealed increased entry errors and latencies in the RUN-40 vs. CON and OB groups (P < 0.01). These findings indicate that obesity-induced impairments in vasoreactivity to insulin involve increased endothelin-1 and decreased nitric oxide signaling. Chronic spontaneous physical activity, initiated after disease onset, reversed impaired vasodilation to insulin and decreased Barnes maze performance, possibly because of increased exploratory behavior.NEW & NOTEWORTHY The new and noteworthy findings are that 1) in rodents, obesity-related deficits in insulin-mediated vasodilation are associated with increased influence of insulin-stimulated ET-1 and depressed influence of insulin-stimulated NOS and 2) a physical activity intervention, initiated after the onset of disease, restores insulin-mediated vasodilation, likely by normalizing insulin-stimulated ET-1 and NOS balance. These data demonstrate that the treatment effects of chronic exercise on insulin-mediated vasodilation extend beyond active skeletal muscle vasculature and include the cerebrovasculature.


Subject(s)
Endothelin-1/metabolism , Insulin/pharmacology , Nitric Oxide/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , Posterior Cerebral Artery/metabolism , Animals , Insulin Resistance/physiology , Obesity/therapy , Physical Conditioning, Animal/methods , Posterior Cerebral Artery/drug effects , Rats , Rats, Inbred OLETF , Treatment Outcome , Vasodilation/drug effects , Vasodilation/physiology
13.
Physiol Rev ; 97(2): 495-528, 2017 04.
Article in English | MEDLINE | ID: mdl-28151424

ABSTRACT

On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.


Subject(s)
Adaptation, Physiological/physiology , Blood Pressure/physiology , Cardiovascular Diseases/metabolism , Exercise/physiology , Hemodynamics/physiology , Animals , Humans , Stress, Mechanical
14.
Exp Biol Med (Maywood) ; 242(6): 617-624, 2017 03.
Article in English | MEDLINE | ID: mdl-28114814

ABSTRACT

We examined the effects of metformin, a commonly used antidiabetic drug, on gene expression in multiple arteries. Specifically, transcriptional profiles of feed arteries and second branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles as well as aortic endothelial scrapes were examined from obese insulin-resistant Otsuka Long-Evans Tokushima Fatty rats treated with ( n = 9) or without ( n = 10) metformin from 20 to 32 weeks of age. Metformin-treated rats exhibited a reduction in body weight, adiposity, and HbA1c ( P < 0.05). The greatest number of differentially expressed genes (FDR < 15%) between those treated with and without metformin was found in the red gastrocnemius 2a arterioles (93 genes), followed by the diaphragm 2a arterioles (62 genes), and soleus 2a arterioles (15 genes). We also found that two genes were differentially expressed in aortic endothelial cells (LETMD1 and HMGCS2, both downregulated), one gene in the gastrocnemius feed artery (BLNK, downregulated), and no genes in the soleus and diaphragm feed arteries and white gastrocnemius 2a arterioles. No single gene was altered by metformin across all vessels examined. This study provides evidence that metformin treatment produces distinct gene expression effects throughout the arterial tree in a rat model of obesity and insulin resistance. Genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action. These findings support the notion that vascular gene regulation in response to oral pharmacological therapy, such as metformin, is vessel specific. Impact statement This study provides evidence that metformin treatment produces artery-specific gene expression effects. The genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action.


Subject(s)
Arteries/drug effects , Gene Expression/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Muscle, Skeletal/blood supply , Obesity/metabolism , Animals , Arteries/metabolism , Insulin Resistance , Male , Rats , Rats, Long-Evans , Rats, Mutant Strains
15.
Leukemia ; 31(4): 872-881, 2017 04.
Article in English | MEDLINE | ID: mdl-27740633

ABSTRACT

Traditional response criteria in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are based on bone marrow morphology and may not accurately reflect clonal tumor burden in patients treated with non-cytotoxic chemotherapy. We used next-generation sequencing of serial bone marrow samples to monitor MDS and AML tumor burden during treatment with epigenetic therapy (decitabine and panobinostat). Serial bone marrow samples (and skin as a source of normal DNA) from 25 MDS and AML patients were sequenced (exome or 285 gene panel). We observed that responders, including those in complete remission (CR), can have persistent measurable tumor burden (that is, mutations) for at least 1 year without disease progression. Using an ultrasensitive sequencing approach, we detected extremely rare mutations (equivalent to 1 heterozygous mutant cell in 2000 non-mutant cells) months to years before their expansion at disease relapse. While patients can live with persistent clonal hematopoiesis in a CR or stable disease, ultimately we find evidence that expansion of a rare subclone occurs at relapse or progression. Here we demonstrate that sequencing of serial samples provides an alternative measure of tumor burden in MDS or AML patients and augments traditional response criteria that rely on bone marrow blast percentage.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clonal Evolution/genetics , Epigenesis, Genetic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Aged , Aged, 80 and over , Bone Marrow/pathology , Exome , Female , Genes, p53 , High-Throughput Nucleotide Sequencing , Histone Deacetylase Inhibitors/administration & dosage , Humans , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , Polymorphism, Single Nucleotide , Remission Induction , Treatment Outcome , Tumor Burden
16.
J Appl Physiol (1985) ; 122(3): 423-429, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27909230

ABSTRACT

During cardiac surgery, specifically sternotomy, cranial hypoperfusion is linked to cerebral ischemia, increased risk of perioperative watershed stroke, and other neurocognitive complications. The purpose of this study was to retrospectively examine the effect of sex hormones in females and exercise prehabilitation in males on median sternotomy-induced changes in cranial perfusion in a large animal model of heart failure. Cranial blood flow (CBF) before and 10 and 60 min poststernotomy was analyzed in eight groups of Yucatan mini-swine: female control, aortic banded, ovariectomized, and ovariectomized + aortic banded; male control, aortic banded, aortic banded + continuous exercise trained, and aortic banded + interval exercise trained. A median sternotomy decreased cranial perfusion during surgery in all pigs (~24 ± 2% relative to baseline; P ≤ 0.05). CBF was 30 ± 7% lower across all time points in all females vs. all males (P ≤ 0.05) and sternotomy decreased cranial perfusion (P ≤ 0.05) independent of sex (females = 34 ± 3% and males = 14 ± 3%) and aortic banding (intact control = 31 ± 5% and intact aortic banded = 31 ± 4%). CBF recovery at 60 min tended to be better in females vs. males (relative to 10 min poststernotomy, females = 23 ± 13% vs. males = -1 ± 5%) and intact aortic banded vs. control pigs (relative to 10 min poststernotomy, aortic banded = 43 ± 20% vs. control = 6 ± 16%; P ≤ 0.05) at 60 min poststernotomy. Ovariectomy impaired CBF recovery during cranial reperfusion 60 min following sternotomy (relative to baseline, all intact females = -1 ± 9% vs. all ovariectomized females = -15 ± 4%; P ≤ 0.05). Chronic exercise training completely prevented significant sternotomy-induced cranial hypoperfusion independent of aortic banding (sternotomy-induced deficit, all sedentary males = -24 ± 6% vs. all exercise-trained males = -7 ± 3%; P ≤ 0.05). Female sex hormones protected against impaired CBF recovery during reperfusion, while chronic exercise training prevented sternotomy-induced cranial hypoperfusion despite cardiac pressure overload.NEW & NOTEWORTHY Our findings suggest a median sternotomy may predispose patients, possibly postmenopausal women and sedentary men, to perioperative cerebral ischemia, an increased risk of cardiac surgery-related stroke, and resulting neurocognitive impairments. Specifically, data from this common surgical procedure show: 1) median sternotomy independently decreases cranial perfusion; 2) female sex hormones improve cranial blood flow recovery following sternotomy; and 3) exercise prehabilitation prevents sternotomy-induced cranial hypoperfusion. Exercise prehabilitation before cardiac surgery may be advantageous for capable patients.


Subject(s)
Brain Ischemia/prevention & control , Brain Ischemia/physiopathology , Cerebrovascular Circulation , Exercise Therapy/methods , Gonadal Steroid Hormones/metabolism , Sternotomy/adverse effects , Sternotomy/rehabilitation , Animals , Brain Ischemia/etiology , Female , Male , Preoperative Care/methods , Swine , Swine, Miniature
17.
Microcirculation ; 24(2)2017 02.
Article in English | MEDLINE | ID: mdl-27889934

ABSTRACT

EXT-induced arteriolar adaptations in skeletal muscle are heterogeneous because of spatial variations in muscle fiber type composition and fiber recruitment patterns during exercise. The purpose of this report is to summarize a series of experiments conducted to test the hypothesis that changes in vascular gene expression are signaled by alterations in shear stress resulting from increases in blood flow, muscle fiber type composition, and fiber recruitment patterns. We also report results from a follow-up study of Ankrd23, one gene whose expression was changed by EXT. We expected to see differences in magnitude of changes in gene expression along arteriolar trees and between/among arteriolar trees but similar directional changes. However, transcriptional profiles of arterioles/arteries from OLETF rats exposed to END or SIT reveal that EXT does not lead to similar directional changes in the transcriptome among arteriolar trees of different skeletal muscles or along arteriolar trees within a particular muscle. END caused the most changes in gene expression in 2A arterioles of soleus and white gastrocnemius with little to no changes in the FAs. Ingenuity Pathway Analysis across vessels revealed significant changes in gene expression in 18 pathways. EXT increased expression of some genes (Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein-binding protein, alpha (Gnat1), and Bcl2l1) in all arterioles examined, but decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). Many contractile and/or structural protein genes were increased by SIT in the gastrocnemius FA, but the same genes exhibited decreased expression in red gastrocnemius arterioles. Ankrd23 mRNA levels increased with increasing branch order in the gastrocnemius arteriolar tree and were increased 19-fold in gastrocnemius muscle FA by SIT. Follow-up experiments indicate that Ankrd23 mRNA level was increased 14-fold in cannulated gastrocnemius FA when intraluminal pressure was increased from 90 and 180 cm H2O for 4 hours. Also, Ankrd23-/- mice exhibit limited ability to form collateral arteries following femoral artery occlusion compared to WT mice (angioscore WT=0.18±0.03; Ankrd23-/- =0.04±0.01). Further research will be required to determine whether Ankrd23 plays an important role in mechanically induced vascular remodeling of the arterial tree in skeletal muscle.


Subject(s)
Arterioles/metabolism , Muscle, Skeletal/blood supply , Physical Conditioning, Animal/physiology , Adaptation, Physiological/physiology , Animals , Arterioles/anatomy & histology , Gene Expression , Humans , Mice , Muscle Proteins/analysis , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Nuclear Proteins , Nuclear Reactors , Rats
18.
Basic Res Cardiol ; 111(6): 61, 2016 11.
Article in English | MEDLINE | ID: mdl-27624732

ABSTRACT

Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.


Subject(s)
Coronary Circulation , Endothelium, Vascular/physiopathology , Hyperlipoproteinemia Type II/physiopathology , Physical Conditioning, Animal/physiology , Animals , Coronary Artery Disease/physiopathology , Disease Models, Animal , Hemodynamics/physiology , Oxygen Consumption/physiology , Swine
20.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G387-95, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27445343

ABSTRACT

Hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats develop obesity, insulin resistance, and nonalcoholic fatty liver disease (NAFLD), but lifestyle modifications, such as caloric restriction (CR), can prevent these conditions. We sought to determine if prior CR had protective effects on metabolic health and NAFLD development following a 4-wk return to ad libitum (AL) feeding. Four-week-old male OLETF rats (n = 8-10/group) were fed AL for 16 wk (O-AL), CR for 16 wk (O-CR; ∼70% kcal of O-AL), or CR for 12 wk followed by 4 wk of AL feeding (O-AL4wk). CR-induced benefit in prevention of NAFLD, including reduced hepatic steatosis, inflammation, and markers of Kupffer cell activation/number, was largely lost in AL4wk rats. These findings occurred in conjunction with a partial loss of CR-induced beneficial effects on obesity and serum triglycerides in O-AL4wk rats, but in the absence of changes in serum glucose or insulin. CR-induced increases in hepatic mitochondrial respiration remained significantly elevated (P < 0.01) in O-AL4wk compared with O-AL rats, while mitochondrial [1-(14)C]palmitate oxidation, citrate synthase activity, and ß-hydroxyacyl-CoA dehydrogenase activity did not differ among OLETF groups. NAFLD development in O-AL4wk rats was accompanied by increases in the protein content of the de novo lipogenesis markers fatty acid synthase and stearoyl-CoA desaturase-1 and decreases in phosphorylated acetyl-CoA carboxylase (pACC)/ACC compared with O-CR rats (P < 0.05 for each). The beneficial effects of chronic CR on NAFLD development were largely lost with 4 wk of AL feeding in the hyperphagic OLETF rat, highlighting the importance of maintaining energy balance in the prevention of NAFLD.


Subject(s)
Caloric Restriction , Fatty Liver/diet therapy , Animals , Biomarkers , Fatty Acids/genetics , Fatty Acids/metabolism , Lipid Metabolism , Lipogenesis , Male , Mitochondria, Liver/metabolism , Rats , Rats, Inbred OLETF
SELECTION OF CITATIONS
SEARCH DETAIL