Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35629623

ABSTRACT

The aim of this article was to compare the shrinkage and air permeability properties of woolen fabrics and fabrics with regenerated wool woven with different weaves for establishing the suitability of regenerated wool for blankets. Two series of products with yarns of different raw materials were woven. One group of fabrics was woven with regenerated woolen yarn in the weft and woolen yarn in the warp. The other group of fabrics was woven only from 100% woolen yarns. The shrinkage in the directions of the warp and the weft and the air permeability of the fabrics with regenerated wool and 100% woolen fabrics with different weaves were investigated. The shrinkage in the directions of the warp and the weft in the fabrics with regenerated wool in the weft and 100% woolen fabrics depended on the float length in the weave. When the length of the weave increased, the shrinkage also increased. The air permeability value changed depending on the number of intersections and the float length. The fabrics with regenerated wool in the direction of the weft had higher air permeability. The Two-way analysis of variance (ANOVA) results showed that the weave influenced the shrinkage in the directions of the weft and warp, but the raw material had no influence on the shrinkage. The weave did not influence the air permeability, in contrast to the raw material. The shrinkage in the directions of the warp and weft and the air permeability did not depend on the interrelationships of the weave group and the raw material of the fabric.

2.
Polymers (Basel) ; 14(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35054656

ABSTRACT

This experiment presents a study carried out on the electric charge passing textiles for heat production in compression weft-knitted composite fabrics used for medical purposes. The aim was to flourish compression support of knitted structure with integrated highly sensitive metal (silver) coated polyamide multifilament yarns and to evaluate its heat origination attributes after stretching in different levels as well as changes of the temperature during the time. A flat double needle-bed knitting machine was utilized to fabricate the selected specimens together with elastomeric inlay-yarn incorporated into the structure for compression generation and silver coated polyamide yarn laid as ground yarn in a plated structure for heat generation. Six different variants depending on the metal coated yarn amount used and the fabric structure along with two types of the conductive yarn linear density were fabricated for this research work. Scanning electron microscope (SEM) images were preoccupied to show the morphology of conductive yarn and thermal pictures were captured to study the evenness of the heat over the surface of composite fabrics depending on conductive yarn distribution in the pattern repeat. The temperature profile of fabricated composite fabrics and comparison of the heat generation by specimens after stretching in different levels was studied.

3.
Polymers (Basel) ; 13(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34771301

ABSTRACT

Four types of nonwovens were prepared from different sections of the banana tree e.g., outer bark (OB), middle bark (MB), inner bark (IB) and midrib of leaf (MR) by wet laid web formation. They were reinforced with two different types of matrices e.g., epoxy and polyester, to make eight variants of composites. Treatments including alkali on raw fibers, water repellent on nonwovens and gamma radiation on composites were applied in order to investigate their effects on properties of the composites such as water absorbency, tensile strength (TS), flexural strength (FS) and elongation at break (Eb%). Variations in the morphological structure and chemical composition of both raw banana fibers and fibers reinforced by the treatments were analyzed by Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). OB composites exhibited higher water absorbency, TS and FS and lower Eb% compared to other types of composites. Epoxy composites were found to have 16% lower water absorbency, 41.2% higher TS and 39.1% higher FS than polyester composites on an average. Water absorbency of the composites was reduced 32% by the alkali treatment and a further 63% by water repellent treatment. TS and FS of the composites were on average improved 71% and 87% by alkali treatment and a further 30% and 35% by gamma radiation respectively.

4.
Materials (Basel) ; 14(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832180

ABSTRACT

Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.

5.
Materials (Basel) ; 14(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073497

ABSTRACT

The behaviour of textile products made from different fibres during finishing has been investigated by many scientists, but these investigations have usually been performed with cotton or synthetic yarns and fabrics. However, the properties of raw materials such as linen and hemp (other cellulose fibres) and linen/silk (cellulose/protein fibres) have rarely been investigated. The aim of the study was to investigate and compare the mechanical (breaking force and elongation at break) and end-use (colour fastness to artificial light, area density, and abrasion resistance) properties of cellulose and cellulose/protein woven fabrics. For all fabrics, ΔE was smaller than three, which is generally imperceptible to the human eye. Flax demonstrated the best dyeability, and hemp demonstrated the poorest dyeability, comparing all the tested fabrics. The colour properties of fabrics were greatly influenced by the washing procedure, and even different fabric components of different weaves lost their colours in different ways. Flax fibres were more crystalline than hemp, and those fibres were more amorphous, which decreased the crystallinity index of flax in flax/silk blended fabric. Unwashed flax fabric was more resistant to artificial light than flax/silk or hemp fabrics. Finishing had a great influence on the abrasion resistance of fabrics. The yarn fibre composition and the finishing process for fabrics both influenced the mechanical (breaking force and elongation at break) and end-use (area density and abrasion resistance) properties of grey and finished fabrics woven from yarns made of different fibres.

SELECTION OF CITATIONS
SEARCH DETAIL
...