Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Genet ; 274-275: 10-20, 2023 06.
Article in English | MEDLINE | ID: mdl-36917897

ABSTRACT

Though rare, pediatric high-grade gliomas (pHGG) are a leading cause of cancer-related mortality in children. We wanted to determine whether our currently available clinical laboratory methods could better define diagnosis for pHGG that had been archived at our institution for the past 20 years (1998 to 2017). We investigated 33 formalin-fixed paraffin-embedded pHGG using ThermoFisher Oncoscan SNP microarray with somatic mutation analysis, Sanger sequencing, and whole genome sequencing. These data were correlated with historical histopathological, chromosomal, clinical, and radiological data. Tumors were subsequently classified according to the 2021 WHO Classification of Paediatric CNS Tumours. All 33 tumors were found to have genetic aberrations that placed them within a 2021 WHO subtype and/or provided prognostic information; 6 tumors were upgraded from WHO CNS grade 3 to grade 4. New pHGG genetic features were found including two small cell glioblastomas with H3 G34 mutations not previously described; one tumor with STRN-NTRK2 fusion; and a congenital diffuse leptomeningeal glioneuronal tumor without a chromosomal 1p deletion but with KIAA1549-BRAF fusion. Overall, the combination of laboratory methods yielded key information for tumor classification. Thus, even small studies of these uncommon tumor types may yield new genetic features and possible new subtypes that warrant future investigations.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Child , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Central Nervous System Neoplasms/genetics , Mutation/genetics , World Health Organization
2.
Oncotarget ; 11(31): 2995-3012, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32821345

ABSTRACT

PURPOSE: Ewing Sarcoma Family of Tumors (ESFT), the second most common pediatric osseous malignancy, are characterized by the pathognomonic chromosomal EWS-ETS translocation. Outside of tumor biopsy, no clinically relevant ESFT biomarkers exist. Additionally, tumor burden assessment at diagnosis, monitoring of disease responsiveness to therapy, and detection of disease recurrence are limited to radiographic imaging. To identify new, clinically relevant biomarkers we evaluated the proteome of a subset of ESFT-derived small extracellular vesicles (sEVs). MATERIALS AND METHODS: We performed the first high quality proteomic study of ESFT-derived sEVs from 5 ESFT cell lines representing the most common EWS-ETS fusion types and identified 619 proteins composing the core ESFT sEV proteome. We compared these core proteins to databases of common plasma-based proteins and sEV-associated proteins found within healthy plasma to identify proteins unique or enriched within ESFT. RESULTS: From these analyses, two membrane bound proteins with biomarker potential were selected, CD99/MIC2 and NGFR, to develop a liquid-based assay enriching of ESFT-associated sEVs and detection of sEV mRNA cargo (i.e., EWS-ETS transcripts). We employed this immuno-enrichment approach to diagnosis of ESFT utilizing plasma (250 µl) from both localized and metastatic ESFT pediatric patients and cancer-free controls, and showed significant diagnostic power [AUC = 0.92, p = 0.001 for sEV numeration, with a PPV = 1.00, 95% CI = (0.63, 1.00) and a NPV = 0.67, 95% CI = (0.30, 0.93)]. CONCLUSIONS: In this study, we demonstrate utilization of circulating ESFT-associated sEVs in pediatric patients as a source of minimally invasive diagnostic and potentially prognostic biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL
...