Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 292(6): R2312-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17332157

ABSTRACT

Skin blood flow increases in response to local heat due to sensorineural and nitric oxide (NO)-mediated dilation. It has been previously demonstrated that arteriolar dilation is inhibited with NO synthase (NOS) blockade. Flow, nonetheless, increases with local heat. This implies that the previously unexamined nonarteriolar responses play a significant role in modulating flow. We thus hypothesized that local heating induces capillary recruitment. We heated a portion (3 cm2) of the Pallid bat wing from 25 degrees C to 37 degrees C for 20 min, and measured changes in terminal feed arteriole (approximately 25 microm) diameter and blood velocity to calculate blood flow (n = 8). Arteriolar dilation was reduced with NOS and sensorineural blockade using a 1% (wt/vol) NG-nitro-L-arginine methyl ester (L-NAME) and 2% (wt/vol) lidocaine solution (n = 8). We also measured changes in the number of perfused capillaries, and the time precapillary sphincters were open with (n = 8) and without (n = 8) NOS plus sensorineural blockade. With heat, the total number of perfused capillaries increased 92.7 +/- 17.9% (P = 0.011), and a similar increase occurred despite NOS plus sensorineural blockade 114.4 +/- 30.0% (P = 0.014). Blockade eliminated arteriolar dilation (-4.5 +/- 2.1%). With heat, the percent time precapillary sphincters remained open increased 32.3 +/- 6.0% (P = 0.0006), and this increase occurred despite NOS plus sensorineural blockade (34.1 +/- 5.8%, P = 0.0004). With heat, arteriolar blood flow increased (187.2 +/- 28.5%, P = 0.00003), which was significantly attenuated with NOS plus sensorineural blockade (88.6 +/- 37.2%, P = 0.04). Thus, capillary recruitment is a fundamental microvascular response to local heat, independent of arteriolar dilation and the well-documented sensorineural and NOS mechanisms mediating the response to local heat.


Subject(s)
Body Temperature Regulation/physiology , Capillaries/physiology , Chiroptera/physiology , Hot Temperature , Vasodilation/physiology , Wings, Animal/blood supply , Wings, Animal/physiology , Animals , Blood Flow Velocity/physiology
2.
Am J Physiol Regul Integr Comp Physiol ; 291(3): R625-32, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16675627

ABSTRACT

Investigators report that local heat causes an increase in skin blood flow consisting of two phases. The first is solely sensory neural, and the second is nitric oxide mediated. We hypothesize that mechanisms behind these two phases are causally linked by shear stress. Because microvascular blood flow, endothelial shear stress, and vessel diameters cannot be measured in humans, bat wing arterioles (26.6 +/- 0.3, 42.0 +/- 0.4, and 58.7 +/- 2.2 microm) were visualized noninvasively on a transparent heat plate via intravital microscopy. Increasing plate temperature from 25 to 37 degrees C increased flow in all three arterial sizes (137.1 +/- 0.3, 251.9 +/- 0.5, and 184.3 +/- 0.6%) in a biphasic manner. With heat, diameter increased in large arterioles (n = 6) by 8.7 +/- 0.03% within 6 min, medium arterioles (n = 8) by 19.7 +/- 0.5% within 4 min, and small arterioles (n = 8) by 31.6 +/- 2.2% in the first minute. Lidocaine (0.2 ml, 2% wt/vol) and NG-nitro-L-arginine methyl ester (0.2 ml, 1% wt/vol) were applied topically to arterioles (approximately 40 microm) to block sensory nerves, modulate shear stress, and block nitric oxide generation. Local heat caused only a 10.4 +/- 5.5% increase in diameter with neural blockade (n = 8) and only a 7.5 +/- 4.1% increase in diameter when flow was reduced (n = 8), both significantly lower than control (P < 0.001). Diameter and flow increases were significantly reduced with NG-nitro-L-arginine methyl ester application (P < 0.05). Our novel thermoregulatory animal model illustrates 1) regulation of shear stress, 2) a nonneural component of the first phase, and 3) a shear-mediated second phase. The time course of dilation suggests that early dilation of small arterioles increases flow and enhances second-phase dilation of the large arterioles.


Subject(s)
Body Temperature Regulation/physiology , Chiroptera/physiology , Hot Temperature , Wings, Animal/blood supply , Wings, Animal/physiology , Animals , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiology , Female , Male , Microcirculation/physiology , Nitric Oxide , Nitric Oxide Synthase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...