Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Resuscitation ; : 110270, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852829

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) in patients resuscitated from cardiac arrest (CA) is associated with increased short-term mortality. However, whether this is because AF adversely affects early resuscitation success, causes post-resuscitation morbidity, or because it is a marker for patient co-morbidities, remains unclear. We aimed to determine the prevalence of AF in patients with ROSC to test the hypothesis that AF is associated with increased risk of rearrest and to determine its impact on mortality and stroke risk. METHODS: We performed a retrospective study of emergency medical services patients with OHCA and ROSC. To examine long-term morbidity and mortality due to AF, an additional observational cohort analysis was performed using a large electronic health record (EHR) database. RESULTS: One hundred nineteen patients with ROSC prior to ED arrival were identified. AF was observed in 39 (33%) of patients. Rearrest was not different between AF and no AF groups (44% vs. 41%, p=0.94). In the EHR analysis, mortality at one year in patients who developed AF was 59% vs. 39% in no AF patients. Odds of stroke was 5x greater in AF patients (p<0.001), with the majority not anticoagulated (93%, p< 0.001) and comorbidities were greater p<0.001). CONCLUSIONS: AF was common following ROSC and not associated with rearrest. AF after CA was associated with increased mortality and stroke risk. These data suggest rhythm control for AF in the immediate post-ROSC period is not warranted; however, vigilance is required for patients who develop persistent AF, particularly with regards to stroke risk and prevention.

2.
Biochem Biophys Res Commun ; 723: 150163, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38820626

ABSTRACT

Excitation-contraction coupling in skeletal muscle myofibers depends upon Ca2+ release from the sarcoplasmic reticulum through the ryanodine receptor/Ca2+-release channel RyR1. The RyR1 contains ∼100 Cys thiols of which ∼30 comprise an allosteric network subject to posttranslational modification by S-nitrosylation, S-palmitoylation and S-oxidation. However, the role and function of these modifications is not understood. Although aberrant S-nitrosylation of multiple unidentified sites has been associated with dystrophic diseases, malignant hyperthermia and other myopathic syndromes, S-nitrosylation in physiological situations is reportedly specific to a single (1 of ∼100) Cys in RyR1, Cys3636 in a manner gated by pO2. Using mice expressing a form of RyR1 with a Cys3636→Ala point mutation to prevent S-nitrosylation at this site, we showed that Cys3636 was the principal target of endogenous S-nitrosylation during normal muscle function. The absence of Cys3636 S-nitrosylation suppressed stimulus-evoked Ca2+ release at physiological pO2 (at least in part by altering the regulation of RyR1 by Ca2+/calmodulin), eliminated pO2 coupling, and diminished skeletal myocyte contractility in vitro and measures of muscle strength in vivo. Furthermore, we found that abrogation of Cys3636 S-nitrosylation resulted in a developmental defect reflected in diminished myofiber diameter, altered fiber subtypes, and altered expression of genes implicated in muscle development and atrophy. Thus, our findings establish a physiological role for pO2-coupled S-nitrosylation of RyR1 in skeletal muscle contractility and development and provide foundation for future studies of RyR1 modifications in physiology and disease.

3.
Article in English | MEDLINE | ID: mdl-38752959

ABSTRACT

BACKGROUND: Ventricular tachycardia (VT)/ventricular fibrillation (VF) rearrest after successful resuscitation is common, and survival is poor. A mechanism of VT/VF, as demonstrated in ex vivo studies, is when repolarization alternans becomes spatially discordant (DIS ALT), which can be enhanced by impaired gap junctions (GJs). However, in vivo spontaneous DIS ALT-induced VT/VF has never been demonstrated, and the effects of GJ on DIS ALT and VT/VF rearrest are unknown. OBJECTIVES: This study aimed to determine whether spontaneous VT/VF rearrest induced by DIS ALT occurs in vivo, and if it can be suppressed by preserving Cx43-mediated GJ coupling and/or connectivity. METHODS: We used an in vivo porcine model of resuscitation from ischemia-induced cardiac arrest combined with ex vivo optical mapping in porcine left ventricular wedge preparations. RESULTS: In vivo, DIS ALT frequently preceded VT/VF and paralleled its incidence at normal (37°C, n = 9) and mild hypothermia (33°C, n = 8) temperatures. Maintaining GJs in vivo with rotigaptide (n = 10) reduced DIS ALT and VT/VF incidence, especially during mild hypothermia, by 90% and 60%, respectively (P < 0.001; P < 0.013). Ex vivo, both rotigaptide (n = 5) and αCT11 (n = 7), a Cx43 mimetic peptide that promotes GJ connectivity, significantly reduced DIS ALT by 60% and 100%, respectively (P < 0.05; P < 0.005), and this reduction was associated with reduced intrinsic heterogeneities of action potential duration rather than changes in conduction velocity restitution. CONCLUSIONS: These results provide the strongest in vivo evidence to date suggesting a causal relationship between spontaneous DIS ALT and VT/VF in a clinically realistic scenario. Furthermore, our results suggest that preserving GJs during resuscitation can suppress VT/VF rearrest.

4.
J Biomed Opt ; 29(2): 028001, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38419756

ABSTRACT

Significance: Radiofrequency ablation (RFA) procedures for atrial fibrillation frequently fail to prevent recurrence, partially due to limitations in assessing extent of ablation. Optical spectroscopy shows promise in assessing RFA lesion formation but has not been validated in conditions resembling those in vivo. Aim: Catheter-based near-infrared spectroscopy (NIRS) was applied to porcine hearts to demonstrate that spectrally derived optical indices remain accurate in blood and at oblique incidence angles. Approach: Porcine left atria were ablated and mapped using a custom-fabricated NIRS catheter. Each atrium was mapped first in phosphate-buffered saline (PBS) then in porcine blood. Results: NIRS measurements showed little angle dependence up to 60 deg. A trained random forest model predicted lesions with a sensitivity of 81.7%, a specificity of 86.1%, and a receiver operating characteristic curve area of 0.921. Predicted lesion maps achieved a mean structural similarity index of 0.749 and a mean normalized inner product of 0.867 when comparing maps obtained in PBS and blood. Conclusions: Catheter-based NIRS can precisely detect RFA lesions on left atria submerged in blood. Optical parameters are reliable in blood and without perpendicular contact, confirming their ability to provide useful feedback during in vivo RFA procedures.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Animals , Swine , Spectroscopy, Near-Infrared , Catheter Ablation/methods , Heart Atria/diagnostic imaging , Heart Atria/pathology , Heart Atria/surgery , Atrial Fibrillation/pathology , Atrial Fibrillation/surgery
5.
Circ Arrhythm Electrophysiol ; 17(1): e012150, 2024 01.
Article in English | MEDLINE | ID: mdl-38126205

ABSTRACT

BACKGROUND: MicroRNA-1 (miR1), encoded by the genes miR1-1 and miR1-2, is the most abundant microRNA in the heart and plays a critical role in heart development and physiology. Dysregulation of miR1 has been associated with various heart diseases, where a significant reduction (>75%) in miR1 expression has been observed in patient hearts with atrial fibrillation or acute myocardial infarction. However, it remains uncertain whether miR1-deficiency acts as a primary etiological factor of cardiac remodeling. METHODS: miR1-1 or miR1-2 knockout mice were crossbred to produce 75%-miR1-knockdown (75%KD; miR1-1+/-:miR1-2-/- or miR1-1-/-:miR1-2+/-) mice. Cardiac pathology of 75%KD cardiomyocytes/hearts was investigated by ECG, patch clamping, optical mapping, transcriptomic, and proteomic assays. RESULTS: In adult 75%KD hearts, the overall miR1 expression was reduced to ≈25% of the normal wild-type level. These adult 75%KD hearts displayed decreased ejection fraction and fractional shortening, prolonged QRS and QT intervals, and high susceptibility to arrhythmias. Adult 75%KD cardiomyocytes exhibited prolonged action potentials with impaired repolarization and excitation-contraction coupling. Comparatively, 75%KD cardiomyocytes showcased reduced Na+ current and transient outward potassium current, coupled with elevated L-type Ca2+ current, as opposed to wild-type cells. RNA sequencing and proteomics assays indicated negative regulation of cardiac muscle contraction and ion channel activities, along with a positive enrichment of smooth muscle contraction genes in 75%KD cardiomyocytes/hearts. miR1 deficiency led to dysregulation of a wide gene network, with miR1's RNA interference-direct targets influencing many indirectly regulated genes. Furthermore, after 6 weeks of bi-weekly intravenous tail-vein injection of miR1 mimics, the ejection fraction and fractional shortening of 75%KD hearts showed significant improvement but remained susceptible to arrhythmias. CONCLUSIONS: miR1 deficiency acts as a primary etiological factor in inducing cardiac remodeling via disrupting heart regulatory homeostasis. Achieving stable and appropriate microRNA expression levels in the heart is critical for effective microRNA-based therapy in cardiovascular diseases.


Subject(s)
MicroRNAs , Mice , Humans , Animals , MicroRNAs/genetics , Proteomics , Ventricular Remodeling , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac , Action Potentials , Mice, Knockout , Homeostasis
6.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1232-1234, 2023 08.
Article in English | MEDLINE | ID: mdl-37354183
7.
Biomed Opt Express ; 14(3): 1228-1242, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36950243

ABSTRACT

Radiofrequency ablation (RFA) is a minimally invasive procedure that is commonly used for the treatment of atrial fibrillation. However, it is associated with a significant risk of arrhythmia recurrence and complications owing to the lack of direct visualization of cardiac substrates and real-time feedback on ablation lesion transmurality. Within this manuscript, we present an automated deep learning framework for in vivo intracardiac optical coherence tomography (OCT) analysis of swine left atria. Our model can accurately identify cardiac substrates, monitor catheter-tissue contact stability, and assess lesion transmurality on both OCT intensity and polarization-sensitive OCT data. To the best of our knowledge, we have developed the first automatic framework for in vivo cardiac OCT analysis, which holds promise for real-time monitoring and guidance of cardiac RFA therapy..

8.
J Pers Med ; 12(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36294819

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of desmosomal and structural proteins that is characterized by fibro-fatty infiltrate in the ventricles and fatal arrhythmia that can occur early before significant structural abnormalities. Most ARVC mutations interfere with ß-catenin-dependent transcription that enhances adipogenesis; however, the mechanistic pathway to arrhythmogenesis is not clear. We hypothesized that adipogenic conditions play an important role in the formation of arrhythmia substrates in ARVC. Cardiac myocyte monolayers co-cultured for 2-4 days with mesenchymal stem cells (MSC) were derived from human-induced pluripotent stem cells with the ARVC5 TMEM43 p.Ser358Leu mutation. The TMEM43 mutation in myocyte co-cultures alone had no significant effect on impulse conduction velocity (CV) or APD. In contrast, when co-cultures were exposed to pro-adipogenic factors for 2-4 days, CV and APD were significantly reduced compared to controls by 49% and 31%, respectively without evidence of adipogenesis. Additionally, these arrhythmia substrates coincided with a significant reduction in IGF-1 expression in MSCs and were mitigated by IGF-1 treatment. These findings suggest that the onset of enhanced adipogenic signaling may be a mechanism of early arrhythmogenesis, which could lead to personalized treatment for arrhythmias associated with TMEM43 and other ARVC mutations.

9.
Biomed Opt Express ; 13(4): 1801-1819, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35519253

ABSTRACT

Atrial fibrillation (AF) is a rapid irregular electrical activity in the upper chamber and the most common sustained cardiac arrhythmia. Many patients require radiofrequency ablation (RFA) therapy to restore sinus rhythm. Pulmonary vein isolation requires distinguishing normal atrial wall from the pulmonary vein tissue, and atrial substrate ablation requires differentiating scar tissue, fibrosis, and adipose tissue. However, current anatomical mapping methods for strategically locating ablation sites by identifying structural substrates in real-time are limited. An intraoperative tool that accurately provides detailed structural information and classifies endocardial substrates could help improve RF guidance during RF ablation therapy. In this work, we propose a 7F NIRS integrated ablation catheter and demonstrate endocardial mapping on ex vivo swine (n = 12) and human (n = 5) left atrium (LA). First, pulmonary vein (PV) sleeve, fibrosis and ablation lesions were identified with NIRS-derived contrast indices. Based on these key spectral features, classification algorithms identified endocardial substrates with high accuracy (<11% error). Then, a predictive model for lesion depth was evaluated on classified lesions. Model predictions correlated well with histological measurements of lesion dimensions (R = 0.984). Classified endocardial substrates and lesion depth were represented in 2D spatial maps. These results suggest NIRS integrated mapping catheters can serve as a complementary tool to the current electroanatomical mapping system to improve treatment efficacy.

10.
Birth Defects Res ; 114(16): 948-958, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35396927

ABSTRACT

Human stems cells have sparked many novel strategies for treating heart disease and for elucidating their underlying mechanisms. For example, arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disorder that is associated with fatal arrhythmias often occurring in healthy young adults. Fibro-fatty infiltrate, a clinical hallmark, progresses with the disease and can develop across both ventricles. Pathogenic variants in genes have been identified, with most being responsible for encoding cardiac desmosome proteins that reside at myocyte boundaries that are critical for cell-to-cell coupling. Despite some understanding of the molecular signaling mechanisms associated with ARVC mutations, their relationship with arrhythmogenesis is complex and not well understood for a monogenetic disorder. This review article focuses on arrhythmia mechanisms in ARVC based on clinical and animal studies and their relationship with disease causing variants. We also discuss the ways in which stem cells can be leveraged to improve our understanding of the role cardiac myocytes, nonmyocytes, metabolic signals, and inflammatory mediators play in an early onset disease such as ARVC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Heart Ventricles , Humans , Mutation , Stem Cells
12.
Heart Rhythm ; 19(11): 1927-1945, 2022 11.
Article in English | MEDLINE | ID: mdl-37850602

ABSTRACT

There are many challenges in the current landscape of electrophysiology (EP) clinical and translational research, including increasing costs and complexity, competing demands, regulatory requirements, and challenges with study implementation. This review seeks to broadly discuss the state of EP research, including challenges and opportunities. Included here are results from a Heart Rhythm Society (HRS) Research Committee member survey detailing HRS members' perspectives regarding both barriers to clinical and translational research and opportunities to address these challenges. We also provide stakeholder perspectives on barriers and opportunities for future EP research, including input from representatives of the U.S. Food and Drug Administration, industry, and research funding institutions that participated in a Research Collaboratory Summit convened by HRS. This review further summarizes the experiences of the heart failure and heart valve communities and how they have approached similar challenges in their own fields. We then explore potential solutions, including various models of research ecosystems designed to identify research challenges and to coordinate ways to address them in a collaborative fashion in order to optimize innovation, increase efficiency of evidence generation, and advance the development of new therapeutic products. The objectives of the proposed collaborative cardiac EP research community are to encourage and support scientific discourse, research efficiency, and evidence generation by exploring collaborative and equitable solutions in which stakeholders within the EP community can interact to address knowledge gaps, innovate, and advance new therapies.


Subject(s)
Cardiac Electrophysiology , Ecosystem , Translational Research, Biomedical
13.
Sci Rep ; 11(1): 24330, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934120

ABSTRACT

Radiofrequency ablation (RFA) is commonly used to treat atrial fibrillation (AF). However, the outcome is often compromised due to the lack of direct real-time feedback to assess lesion transmurality. In this work, we evaluated the ability of polarization-sensitive optical coherence tomography (PSOCT) to measure cardiac wall thickness and assess RF lesion transmurality during left atrium (LA) RFA procedures. Quantitative transmural lesion criteria using PSOCT images were determined ex vivo using an integrated PSOCT-RFA catheter and fresh swine hearts. LA wall thickness of living swine was measured with PSOCT and validated with a micrometer after harvesting the heart. A total of 38 point lesions were created in the LA of 5 living swine with the integrated PSOCT-RFA catheter using standard clinical RFA procedures. For all lesions with analyzable PSOCT images, lesion transmurality was assessed with a sensitivity of 89% (17 of 19 tested positive) and a specificity of 100% (5 of 5 tested negative) using the quantitative transmural criteria. This is the first report of using PSOCT to assess LA RFA lesion transmurality in vivo. The results indicate that PSOCT may potentially provide direct real-time feedback for LA wall thickness and lesion transmurality.


Subject(s)
Atrial Fibrillation/surgery , Heart Atria/surgery , Radiofrequency Ablation/methods , Tomography, Optical Coherence/instrumentation , Tomography, Optical Coherence/methods , Animals , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/pathology , Heart Atria/diagnostic imaging , Heart Atria/pathology , Swine
14.
Sci Rep ; 11(1): 20570, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663875

ABSTRACT

Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS-/- (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Diabetic Nephropathies/physiopathology , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/pathology , Diabetes Complications/physiopathology , Diabetes Mellitus/physiopathology , Diabetic Nephropathies/pathology , Disease Models, Animal , Heart Rate/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Voltage-Sensitive Dye Imaging/methods
15.
J Am Heart Assoc ; 10(10): e016676, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33938226

ABSTRACT

Background Amiodarone is administered during resuscitation, but its antiarrhythmic effects during targeted temperature management are unknown. The purpose of this study was to determine the effect of both therapeutic hypothermia and amiodarone on arrhythmia substrates during resuscitation from cardiac arrest. Methods and Results We utilized 2 complementary models: (1) In vitro no-flow global ischemia canine left ventricular transmural wedge preparation. Wedges at different temperatures (36°C or 32°C) were given 5 µmol/L amiodarone (36-Amio or 32-Amio, each n=8) and subsequently underwent ischemia and reperfusion. Results were compared with previous controls. Optical mapping was used to measure action potential duration, dispersion of repolarization (DOR), and conduction velocity (CV). (2) In vivo pig model of resuscitation. Pigs (control or targeted temperature management, 32-34°C) underwent ischemic cardiac arrest and were administered amiodarone (or not) after 8 minutes of ventricular fibrillation. In vitro: therapeutic hypothermia but not amiodarone prolonged action potential duration. During ischemia, DOR increased in the 32-Amio group versus 32-Alone (84±7 ms versus 40±7 ms, P<0.05) while CV slowed in the 32-Amio group. Amiodarone did not affect CV, DOR, or action potential duration during ischemia at 36°C. Conduction block was only observed at 36°C (5/8 36-Amio versus 6/7 36-Alone, 0/8 32-Amio, versus 0/7 32-Alone). In vivo: QTc decreased upon reperfusion from ischemia that was ameliorated by targeted temperature management. Amiodarone did not worsen DOR or CV. Amiodarone suppressed rearrest caused by ventricular fibrillation (7/8 without amiodarone, 2/7 with amiodarone, P=0.041), but not pulseless electrical activity (2/8 without amiodarone, 5/7 with amiodarone, P=0.13). Conclusions Although amiodarone abolishes a beneficial effect of therapeutic hypothermia on ischemia-induced DOR and CV, it did not worsen susceptibility to ventricular tachycardia/ventricular fibrillation during resuscitation.


Subject(s)
Amiodarone/pharmacology , Heart Arrest/therapy , Heart Conduction System/physiopathology , Heart Ventricles/physiopathology , Hypothermia, Induced/methods , Resuscitation/methods , Ventricular Fibrillation/complications , Action Potentials/physiology , Animals , Anti-Arrhythmia Agents/pharmacology , Disease Models, Animal , Dogs , Heart Arrest/etiology , Heart Arrest/physiopathology , Male , Swine , Ventricular Fibrillation/physiopathology , Ventricular Fibrillation/therapy
16.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33590773

ABSTRACT

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Subject(s)
Ion Channels/metabolism , Membrane Potentials/physiology , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Animals , Dogs , Guinea Pigs , Humans , Mice
17.
Circ Arrhythm Electrophysiol ; 13(10): e008740, 2020 10.
Article in English | MEDLINE | ID: mdl-32755466

ABSTRACT

BACKGROUND: The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS: hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS: Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1ß (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1ß or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS: We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/metabolism , Calcium Signaling , Heart Failure/metabolism , Induced Pluripotent Stem Cells/metabolism , Inflammation Mediators/metabolism , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Paracrine Communication , Adult , Aged , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Case-Control Studies , Cell Lineage , Cells, Cultured , Coculture Techniques , Female , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Induced Pluripotent Stem Cells/pathology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Kinetics , Male , Mesenchymal Stem Cells/pathology , Middle Aged , Myocytes, Cardiac/pathology , Phenotype
18.
Heart Rhythm ; 16(2): 281-289, 2019 02.
Article in English | MEDLINE | ID: mdl-30193854

ABSTRACT

BACKGROUND: Cardiac alternans is promoted by heart failure (HF)-induced calcium (Ca2+) cycling abnormalities. Late sodium current (INa,L) is enhanced in HF and promotes Ca2+ overload; however, mechanisms underlying an antiarrhythmic effect of INa,L blockade in HF remain unclear. OBJECTIVE: The purpose of this study was to determine whether ranolazine suppresses cardiac alternans in HF by normalizing Ca2+ cycling. METHODS: Transmural dual optical mapping of Ca2+ transients and action potentials was performed in wedge preparations from 8 HF and 8 control (normal) dogs. Susceptibility to action potential duration alternans (APD-ALT) and Ca2+ transient alternans (Ca-ALT) was compared at baseline and with ranolazine (5-10 µM). RESULTS: HF increased APD- and Ca-ALT compared to normal (both P <.05), and ranolazine suppressed APD- and Ca-ALT in both groups (P <.05). The incidence of spatially discordant alternans (DIS-ALT) was increased by HF (8/8) compared to normal (4/8; P <.05), and ranolazine decreased DIS-ALT in HF (4/8; P <.05).Not only did ranolazine mitigate HF-induced Ca2+ overload, it also attenuated APD-ALT to Ca-ALT gain (amount of APD-ALT produced by Ca-ALT). In HF, APD-ALT to Ca-ALT gain was significantly increased (0.55 ± 0.02) compared to normal (0.44 ± 0.02; P <.05) and was normalized by ranolazine (0.36 ± 0.05; P <.05), representing a complementary mechanism by which INa,L blockade suppressed cardiac alternans. CONCLUSION: Ranolazine attenuated arrhythmogenic cardiac alternans in HF, both by suppressing Ca-ALT and decreasing the coupling gain of APD-ALT to Ca-ALT. Blockade of INa,L may reverse impaired Ca2+ cycling to mitigate cardiac alternans, representing a mechanism underlying the antiarrhythmic benefit of INa,L blockade in HF.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Calcium/metabolism , Heart Conduction System/drug effects , Heart Failure/complications , Myocytes, Cardiac/metabolism , Ranolazine/therapeutic use , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Disease Models, Animal , Dogs , Heart Conduction System/physiopathology , Heart Failure/drug therapy , Heart Failure/metabolism , Myocytes, Cardiac/pathology , Optical Imaging/methods , Sodium Channel Blockers/therapeutic use
19.
Am J Physiol Heart Circ Physiol ; 315(5): H1250-H1257, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30118344

ABSTRACT

Mutations in voltage-gated Na+ channels have been linked to several channelopathies leading to a wide variety of diseases including cardiac arrhythmias, epilepsy, and myotonia. We have previously demonstrated that voltage-gated Na+ channel (Nav)1.5 trafficking-deficient mutant channels could lead to a dominant negative effect by impairing trafficking of the wild-type (WT) channel. We also reported that voltage-gated Na+ channels associate as dimers with coupled gating properties. Here, we hypothesized that the dominant negative effect of mutant Na+ channels could also occur through coupled gating. This was tested using cell surface biotinylation and single channel recordings to measure the gating probability and coupled gating of the dimers. As previously reported, coexpression of Nav1.5-L325R with WT channels led to a dominant negative effect, as reflected by a 75% reduction in current density. Surprisingly, cell surface biotinylation showed that Nav1.5-L325R mutant is capable of trafficking, with 40% of Nav1.5-L325R reaching the cell surface when expressed alone. Importantly, even though a dominant negative effect on the Na+ current is observed when WT and Nav1.5-L325R are expressed together, the total Nav channel cell surface expression was not significantly altered compared with WT channels alone. Thus, the trafficking deficiency could not explain the 75% decrease in inward Na+ current. Interestingly, single channel recordings showed that Nav1.5-L325R exerted a dominant negative effect on the WT channel at the gating level. Both coupled gating and gating probability of WT:L325R dimers were drastically impaired. We conclude that dominant negative suppression exerted by Nav1.5 mutants can also be caused by impairing the WT gating probability, a mechanism resulting from the dimerization and coupled gating of voltage-gated Na+ channel α-subunits. NEW & NOTEWORTHY The presence of dominant negative mutations in the Na+ channel gene leading to Brugada syndrome was supported by our recent findings that Na+ channel α-subunits form dimers. Up until now, the dominant negative effect was thought to be caused by the interaction of the wild-type Na+ channel with trafficking-deficient mutant channels. However, the present study demonstrates that coupled gating of voltage-gated Na+ channels can also be responsible for the dominant negative effect leading to arrhythmias.


Subject(s)
Ion Channel Gating/genetics , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Sodium/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , HEK293 Cells , Heart Rate/genetics , Humans , Markov Chains , Membrane Potentials , Models, Biological , Protein Multimerization , Protein Transport , Time Factors
20.
Int J Mol Sci ; 19(5)2018 May 04.
Article in English | MEDLINE | ID: mdl-29734659

ABSTRACT

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFPhigh iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFPlow cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Myocytes, Cardiac/cytology , Animals , Cell Cycle/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Myocytes, Cardiac/metabolism , Regenerative Medicine/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...