Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Mol Pharmacol ; 104(3): 105-114, 2023 09.
Article in English | MEDLINE | ID: mdl-37348913

ABSTRACT

The human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R), a class B G-protein-coupled receptor (GPCR) identified almost 30 years ago, represents an important pharmacological target in the areas of neuroscience, oncology, and immunology. Despite interest in this target, only a very limited number of small molecule modulators have been reported for this receptor. We herein describe the results of a drug discovery program aiming for the identification of a potent and selective hPAC1-R antagonist. An initial high-throughput screening (HTS) screen of 3.05 million compounds originating from the Bayer screening library failed to identify any tractable hits. A second, completely revised screen using native human embryonic kidney (HEK)293 cells yielded a small number of hits exhibiting antagonistic properties (4.2 million compounds screened). BAY 2686013 (1) emerged as a promising compound showing selective antagonistic activity in the submicromolar potency range. In-depth characterization supported the hypothesis that BAY 2686013 blocks receptor activity in a noncompetitive manner. Preclinical, pharmacokinetic profiling indicates that BAY 2686013 is a valuable tool compound for better understanding the signaling and function of hPAC1-R. SIGNIFICANCE STATEMENT: Although the human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R) is of major significance as a therapeutic target with a well documented role in pain signaling, only a very limited number of small-molecule (SMOL) compounds are known to modulate its activity. We identified and thoroughly characterized a novel, potent, and selective SMOL antagonist of hPAC1-R (acting in an allosteric manner). These characteristics make BAY 2686013 an ideal tool for further studies.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Humans , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry
2.
Front Behav Neurosci ; 17: 1118598, 2023.
Article in English | MEDLINE | ID: mdl-36844654

ABSTRACT

Endometriosis is a chronic, hormone-dependent, inflammatory disease, characterized by the presence and growth of endometrial tissue outside the uterine cavity. It is associated with moderate to severe pelvic and abdominal pain symptoms, subfertility and a marked reduction in health-related quality of life. Furthermore, relevant co-morbidities with affective disorders like depression or anxiety have been described. These conditions have a worsening effect on pain perception in patients and might explain the negative impact on quality of life observed in those suffering from endometriosis-associated pain. Whereas several studies using rodent models of endometriosis focused on biological and histopathological similarities with the human situation, the behavioral characterization of these models was never performed. This study investigated the anxiety-related behaviors in a syngeneic model of endometriosis. Using elevated plus maze and the novel environment induced feeding suppression assays we observed the presence of anxiety-related behaviors in endometriosis-induced mice. In contrast, locomotion or generalized pain did not differ between groups. These results indicate that the presence of endometriosis lesions in the abdominal cavity could, similarly to patients, induce profound psychopathological changes/impairments in mice. These readouts might provide additional tools for preclinical identification of mechanisms relevant for development of endometriosis-related symptoms.

3.
J Med Chem ; 66(2): 1583-1600, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36622903

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a voltage-dependent, ligand-gated ion channel, and activation thereof is linked to a variety of painful conditions. Preclinical studies have demonstrated the role of TRPA1 receptors in a broad range of animal models of acute, inflammatory, and neuropathic pain. In addition, a clinical study using the TRPA1 antagonist GRC-17536 (Glenmark Pharmaceuticals) demonstrated efficacy in a subgroup of patients with painful diabetic neuropathy. Consequently, there is an increasing interest in TRPA1 inhibitors as potential analgesics. Herein, we report the identification of a fragment-like hit from a high-throughput screening (HTS) campaign and subsequent optimization to provide a novel and brain-penetrant TRPA1 inhibitor (compound 18, BAY-390), which is now being made available to the research community as an open-source in vivo probe.


Subject(s)
Neuralgia , Transient Receptor Potential Channels , Animals , Analgesics/pharmacology , Ankyrins , TRPA1 Cation Channel
4.
Sci Rep ; 11(1): 19877, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615939

ABSTRACT

ATP-dependent P2X3 receptors play a crucial role in the sensitization of nerve fibers and pathological pain pathways. They are also involved in pathways triggering cough and may contribute to the pathophysiology of endometriosis and overactive bladder. However, despite the strong therapeutic rationale for targeting P2X3 receptors, preliminary antagonists have been hampered by off-target effects, including severe taste disturbances associated with blocking the P2X2/3 receptor heterotrimer. Here we present a P2X3 receptor antagonist, eliapixant (BAY 1817080), which is both highly potent and selective for P2X3 over other P2X subtypes in vitro, including P2X2/3. We show that eliapixant reduces inflammatory pain in relevant animal models. We also provide the first in vivo experimental evidence that P2X3 antagonism reduces neurogenic inflammation, a phenomenon hypothesised to contribute to several diseases, including endometriosis. To test whether eliapixant could help treat endometriosis, we confirmed P2X3 expression on nerve fibers innervating human endometriotic lesions. We then demonstrate that eliapixant reduces vaginal hyperalgesia in an animal model of endometriosis-associated dyspareunia, even beyond treatment cessation. Our findings indicate that P2X3 antagonism could alleviate pain, including non-menstrual pelvic pain, and modify the underlying disease pathophysiology in women with endometriosis. Eliapixant is currently under clinical development for the treatment of disorders associated with hypersensitive nerve fibers.


Subject(s)
Nerve Fibers/drug effects , Nerve Fibers/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X3/metabolism , Somatosensory Disorders/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Line , Disease Models, Animal , Female , Gene Expression , Humans , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Membrane Potentials/drug effects , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Rats , Receptors, Purinergic P2X3/genetics , Somatosensory Disorders/drug therapy , Somatosensory Disorders/etiology
5.
Sci Transl Med ; 13(608)2021 08 25.
Article in English | MEDLINE | ID: mdl-34433639

ABSTRACT

Endometriosis is a common chronic inflammatory condition causing pelvic pain and infertility in women, with limited treatment options and 50% heritability. We leveraged genetic analyses in two species with spontaneous endometriosis, humans and the rhesus macaque, to uncover treatment targets. We sequenced DNA from 32 human families contributing to a genetic linkage signal on chromosome 7p13-15 and observed significant overrepresentation of predicted deleterious low-frequency coding variants in NPSR1, the gene encoding neuropeptide S receptor 1, in cases (predominantly stage III/IV) versus controls (P = 7.8 × 10-4). Significant linkage to the region orthologous to human 7p13-15 was replicated in a pedigree of 849 rhesus macaques (P = 0.0095). Targeted association analyses in 3194 surgically confirmed, unrelated cases and 7060 controls revealed that a common insertion/deletion variant, rs142885915, was significantly associated with stage III/IV endometriosis (P = 5.2 × 10-5; odds ratio, 1.23; 95% CI, 1.09 to 1.39). Immunohistochemistry, qRT-PCR, and flow cytometry experiments demonstrated that NPSR1 was expressed in glandular epithelium from eutopic and ectopic endometrium, and on monocytes in peritoneal fluid. The NPSR1 inhibitor SHA 68R blocked NPSR1-mediated signaling, proinflammatory TNF-α release, and monocyte chemotaxis in vitro (P < 0.01), and led to a significant reduction of inflammatory cell infiltrate and abdominal pain (P < 0.05) in a mouse model of peritoneal inflammation as well as in a mouse model of endometriosis. We conclude that the NPSR1/NPS system is a genetically validated, nonhormonal target for the treatment of endometriosis with likely increased relevance to stage III/IV disease.


Subject(s)
Endometriosis , Receptors, G-Protein-Coupled/genetics , Animals , Endometriosis/drug therapy , Endometriosis/genetics , Endometrium , Female , Humans , Macaca mulatta , Mice , Tumor Necrosis Factor-alpha
6.
Pain ; 162(9): 2349-2365, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34448751

ABSTRACT

ABSTRACT: Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.


Subject(s)
Cystitis, Interstitial , Endometriosis , Cystitis, Interstitial/therapy , Female , Humans , Pelvic Pain/therapy , Reproducibility of Results , Translational Research, Biomedical
8.
Sci Rep ; 10(1): 1495, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001775

ABSTRACT

Endometriosis is a common gynaecological disease of women in reproductive age, and is thought to arise from retrograde menstruation and implantation of endometrial tissue, mostly into the peritoneal cavity. The condition is characterized by a chronic, unresolved inflammatory process thereby contributing to pain as cardinal symptom in endometriosis. Elevated reactive oxygen species (ROS) and oxidative stress have been postulated as factors in endometriosis pathogenesis. We here set out for a systematic study to identify novel mechanisms and pathways relating to oxidative stress in ectopic peritoneal lesions. Using combined proteomic and transcriptomic approaches, we identified novel targets including upregulated pro-oxidative enzymes, such as amine oxidase 3/vascular adhesion protein 1 (AOC3/VAP1) as well as downregulated protective factors, in particular alkenal reductase PTGR1 and methionine sulfoxide reductase. Consistent with an altered ROS landscape, we observed hemoglobin / iron overload, ROS production and lipid peroxidation in ectopic lesions. ROS-derived 4-hydroxy-2-nonenal induced interleukin IL-8 release from monocytes. Notably, AOC3 inhibitors provoked analgesic effects in inflammatory pain models in vivo, suggesting potential translational applicability.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Cell Adhesion Molecules/metabolism , Endometriosis/metabolism , Peritoneal Diseases/metabolism , Aldehydes/metabolism , Allyl Compounds/pharmacology , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Analgesics/pharmacology , Animals , Biomarkers/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , Disease Models, Animal , Endometriosis/genetics , Endometriosis/pathology , Female , Gene Expression Profiling , Heme/metabolism , Humans , Inflammation Mediators/metabolism , Interleukin-8/metabolism , Iron/metabolism , Lipid Peroxidation , Metabolic Networks and Pathways , Mice , Mice, Inbred BALB C , Myeloid Cells/pathology , Oxidative Stress , Peritoneal Diseases/genetics , Peritoneal Diseases/pathology , Phagocytosis , Sulfonamides/pharmacology
9.
J Med Chem ; 62(24): 11194-11217, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31746599

ABSTRACT

The P2X4 receptor is a ligand-gated ion channel that is expressed on a variety of cell types, especially those involved in inflammatory and immune processes. High-throughput screening led to a new class of P2X4 inhibitors with substantial CYP 3A4 induction in human hepatocytes. A structure-guided optimization with respect to decreased pregnane X receptor (PXR) binding was started. It was found that the introduction of larger and more polar substituents on the ether linker led to less PXR binding while maintaining the P2X4 inhibitory potency. This translated into significantly reduced CYP 3A4 induction for compounds 71 and 73. Unfortunately, the in vivo pharmacokinetic (PK) profiles of these compounds were insufficient for the desired profile in humans. However, BAY-1797 (10) was identified and characterized as a potent and selective P2X4 antagonist. This compound is suitable for in vivo studies in rodents, and the anti-inflammatory and anti-nociceptive effects of BAY-1797 were demonstrated in a mouse complete Freund's adjuvant (CFA) inflammatory pain model.


Subject(s)
Acetamides/pharmacology , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/metabolism , Drug Discovery , Inflammation/drug therapy , Pain/drug therapy , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X4/chemistry , Acetamides/chemistry , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Cytochrome P-450 CYP3A Inducers/chemistry , Enzyme Induction , Female , Gene Expression Regulation , Humans , Inflammation/metabolism , Inflammation/pathology , Ligands , Male , Mice , Mice, Inbred C57BL , Pain/metabolism , Pain/pathology , Purinergic P2X Receptor Antagonists/chemistry , Rats , Rats, Wistar
11.
Front Cell Neurosci ; 12: 464, 2018.
Article in English | MEDLINE | ID: mdl-30559651

ABSTRACT

Morphine is an analgesic alkaloid used to relieve severe pain, and irreversible binding of morphine to specific unknown proteins has been previously observed. In the brain, changes in the expression of energy metabolism enzymes contribute to behavioral abnormalities during chronic morphine treatment. Creatine kinase B (CK-B) is a key enzyme involved in brain energy metabolism. CK-B also corresponds to the imidazoline-binding protein I2 which binds dopamine (a precursor of morphine biosynthesis) irreversibly. Using biochemical approaches, we show that recombinant mouse CK-B possesses a µM affinity for morphine and binds to morphine in vitro. The complex formed by CK-B and morphine is resistant to detergents, reducing agents, heat treatment and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). CK-B-derived peptides CK-B1-75 and CK-B184-258 were identified as two specific morphine binding-peptides. In vitro, morphine (1-100 µM) significantly reduces recombinant CK-B enzymatic activity. Accordingly, in vivo morphine administration (7.5 mg/kg, i.p.) to mice significantly decreased brain extract CK-B activity compared to saline-treated animals. Together, these results show that morphine strongly binds CK-B and inhibits its activity in vitro and in vivo.

12.
Br J Pharmacol ; 175(19): 3844-3856, 2018 10.
Article in English | MEDLINE | ID: mdl-30051501

ABSTRACT

BACKGROUND AND PURPOSE: Chronic administration of medication can significantly affect metabolic enzymes leading to physiological adaptations. Morphine metabolism in the liver has been extensively studied following acute morphine treatment, but such metabolic processes in the CNS are poorly characterized. Long-term morphine treatment is limited by the development of tolerance, resulting in a decrease of its analgesic effect. Whether or not morphine analgesic tolerance affects in vivo brain morphine metabolism and blood-brain barrier (BBB) permeability remains a major question. Here, we have attempted to characterize the in vivo metabolism and BBB permeability of morphine after long-term treatment, at both central and peripheral levels. EXPERIMENTAL APPROACH: Male C57BL/6 mice were injected with morphine or saline solution for eight consecutive days in order to induce morphine analgesic tolerance. On the ninth day, both groups received a final injection of morphine (85%) and d3-morphine (morphine bearing three 2 H; 15%, w/w). Mice were then killed and blood, urine, brain and liver samples were collected. LC-MS/MS was used to quantify morphine, its metabolite morphine-3-glucuronide (M3G) and their respective d3-labelled forms. KEY RESULTS: We found no significant differences in morphine CNS uptake and metabolism between control and tolerant mice. Interestingly, d3-morphine metabolism was decreased compared to morphine without any interference with our study. CONCLUSIONS AND IMPLICATIONS: Our data suggests that tolerance to the analgesic effects of morphine is not linked to increased glucuronidation to M3G or to altered global BBB permeability of morphine.


Subject(s)
Brain/drug effects , Glucuronides/metabolism , Morphine/pharmacology , Animals , Brain/metabolism , Cells, Cultured , Drug Tolerance , Isotope Labeling , Male , Mice , Mice, Inbred C57BL , Molecular Conformation , Morphine/administration & dosage , Morphine/metabolism
13.
Mol Pain ; 14: 1744806917754142, 2018.
Article in English | MEDLINE | ID: mdl-29353538

ABSTRACT

Background Lithium is widely used to treat bipolar disorders and displays mood stabilizing properties. In addition, lithium relieves painful cluster headaches and has a strong analgesic effect in neuropathic pain rat models. Objectives To investigate the analgesic effect of lithium on the cuff model of neuropathic pain. Methods We used behavioral and pharmacological approaches to study the analgesic effect of a single injection of lithium in wild-type and mu opioid receptor (MOR) null cuffed neuropathic mice. Mass spectrometry and enzyme-linked immunosorbent assay allowed to measure the levels of endogenous MOR agonist beta-endorphin as well as monoamines in brain and plasma samples 4 h after lithium administration. Results A single injection of lithium chloride (100 mg/kg, ip) alleviated mechanical allodynia for 24 h, and this effect was absent in MOR null neuropathic mice. Biochemical analyses highlight a significant increase in beta-endorphin levels by 30% in the brain of lithium-treated mice compared to controls. No variation of beta-endorphin was detected in the blood. Conclusions Together, our results provide evidence that lithium induces a long-lasting analgesia in neuropathic mice presumably through elevated brain levels of beta-endorphin and the activation of MORs.


Subject(s)
Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Lithium/therapeutic use , Receptors, Opioid, mu/metabolism , Analgesia , Animals , Biogenic Monoamines/blood , Catecholamines/blood , Disease Models, Animal , Hyperalgesia/blood , Limit of Detection , Lithium/pharmacology , Male , Mice, Inbred C57BL , Neuralgia/blood , Neuralgia/drug therapy , Neuralgia/pathology , Nociception/drug effects , Receptors, Opioid, mu/deficiency
14.
Trends Pharmacol Sci ; 36(5): 270-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25899467

ABSTRACT

Endometriosis is a chronic, hormone-dependent, inflammatory disease, characterized by the presence and growth of endometrial tissue outside the uterine cavity. It affects 5-10% of the female population of reproductive age and is frequently associated with moderate to severe pain, subfertility, and a marked reduction in health-related quality of life. Here, we propose a new pathophysiological concept of endometriosis, summarizing recent findings in one unifying picture. We propose menstruating tissue as the trigger for inflammatory pain in endometriosis through the activation of innate immune cells and peripheral nerve endings. We speculate how innovative treatment modalities beyond hormonal treatment will improve patients' lives.


Subject(s)
Endometriosis/physiopathology , Menstrual Cycle/physiology , Nociceptive Pain/physiopathology , Female , Humans , Inflammation/physiopathology , Menstrual Cycle/immunology , Menstrual Cycle/metabolism
15.
Brain Struct Funct ; 220(3): 1573-84, 2015.
Article in English | MEDLINE | ID: mdl-24647754

ABSTRACT

The superior colliculus is a hub for multisensory integration necessary for visuo-spatial orientation, control of gaze movements and attention. The multiple functions of the superior colliculus have prompted hypotheses about its involvement in neuropsychiatric conditions, but to date, this topic has not been addressed experimentally. We describe experiments on genetically modified mice, the Isl2-EphA3 knock-in line, that show a well-characterized duplication of the retino-collicular and cortico-collicular axonal projections leading to hyperstimulation of the superior colliculus. To explore the functional impact of collicular hyperstimulation, we compared the performance of homozygous knock-in, heterozygous knock-in and wild-type mice in several behavioral tasks requiring collicular activity. The light/dark box test and Go/No-Go conditioning task revealed that homozygous mutant mice exhibit defective response inhibition, a form of impulsivity. This defect was specific to attention as other tests showed no differences in visually driven behavior, motivation, visuo-spatial learning and sensorimotor abilities among the different groups of mice. Monoamine quantification and gene expression profiling demonstrated a specific enrichment of noradrenaline only in the superficial layers of the superior colliculus of Isl2-EphA3 knock-in mice, where the retinotopy is duplicated, whereas transcript levels of receptors, transporters and metabolic enzymes of the monoaminergic pathway were not affected. We demonstrate that the defect in response inhibition is a consequence of noradrenaline imbalance in the superficial layers of the superior colliculus caused by retinotopic map duplication. Our results suggest that structural abnormalities in the superior colliculus can cause defective response inhibition, a key feature of attention-deficit disorders.


Subject(s)
Inhibition, Psychological , Norepinephrine/analysis , Psychomotor Performance/physiology , Superior Colliculi/physiology , Animals , Anxiety/physiopathology , Circadian Rhythm , Depth Perception/physiology , Dopamine/analysis , Gene Knock-In Techniques , LIM-Homeodomain Proteins/genetics , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity , Receptor, EphA3/genetics , Superior Colliculi/metabolism , Transcription Factors/genetics , Visual Acuity/physiology , Visual Pathways/physiology
16.
J Neurosci Methods ; 232: 118-24, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24861422

ABSTRACT

BACKGROUND: Chronic pelvic pain (CPP) is defined as long-lasting and severe pelvic pain persisting over six months in cyclic or non-cyclic chronic manner. Various pathologic conditions like endometriosis, abdominal infections, intra-peritoneal adhesions or infection, underlie CPP which is often the leading symptom of the associated diseases. Pharmacological approaches addressing CPP are hampered by the absence of a straight-forward, objective, and reliable method for the assessment of CPP in rodents. METHOD: In the presented study, the dynamic weight bearing system (DWB) was employed for the first time for the evaluation of pelvic pain in a rat model of LPS-induced peritonitis. Rats were pretreated with the COX-2 inhibitor rofecoxib and PGE2 levels were evaluated in peritoneal lavage. RESULTS: DWB analysis revealed that rats treated with LPS showed a relief posture by a significantly increased weight distribution to the front when compared to vehicle-treated animals. This effect was prevented by rofecoxib treatment indicating the sensitivity of the model for pelvic pain related to peritonitis. Analysis of the PGE2 levels in the peritoneal fluid indicated a correlation with the relief posture intensity. COMPARISON WITH EXISTING METHOD(S): In contrast to others weight bearing approaches, the use of DWB allows evaluation of spontaneous posture changes as a consequence of pelvic pain. CONCLUSION: Taken together, we were able to show, that DWB combined with LPS-induced peritonitis may deliver a new reliable animal model addressing pelvic pain with high construct validity (peritoneal inflammation), and face validity (pain related relief posture).


Subject(s)
Abdominal Pain/diagnosis , Abdominal Pain/etiology , Peritonitis/complications , Weight-Bearing , Abdominal Pain/drug therapy , Analysis of Variance , Animals , Cyclooxygenase 2 Inhibitors/therapeutic use , Dinoprostone/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Lactones/therapeutic use , Lipopolysaccharides/toxicity , Pain Measurement , Peritonitis/chemically induced , Peritonitis/metabolism , Rats , Rats, Wistar , Sulfones/therapeutic use , Time Factors
17.
Biofactors ; 40(1): 113-20, 2014.
Article in English | MEDLINE | ID: mdl-23861301

ABSTRACT

Endogenous morphine and its derivatives (morphine-6-glucuronide [M6G]; morphine-3-glucuronide [M3G]) are formed by mammalian cells from dopamine. Changes in the concentrations of endogenous morphine have been demonstrated in several pathologies (sepsis, Parkinson's disease, etc.), and they might be relevant as pathological markers. While endogenous morphine levels are detectable using enzyme-linked immunosorbant assay (ELISA), mass spectrometry (MS) analysis was, so far, the only approach to detect and quantify M6G. This study describes the preparation of a specific anti-M6G rabbit polyclonal antibody and its validation. The specificity of this antibody was assessed against 30 morphine-related compounds. Then, a M6G-specific ELISA-assay was tested to quantify M6G in the plasma of healthy donors, morphine-treated, and critically ill patients. The antibody raised against M6G displays a strong affinity for M6G, codeine-6-glucuronide, and morphine-3-6-glucuronide, whereas only weak cross-reactivities were observed for the other compounds. Both M6G-ELISA and LC-MS/MS approaches revealed the absence of M6G in the plasma of healthy donors (controls, n = 8). In all positive donors treated with morphine-patch (n = 5), M6G was detected using both M6G-ELISA and LC-MS/MS analysis. Finally, in a study on critically ill patients with circulating endogenous morphine (n = 26), LC-MS/MS analysis revealed that 73% of the positive-patients (19 of 26), corresponding to high M6G-levels in M6G-ELISA, contained M6G. In conclusion, we show that endogenous M6G can be found at higher levels than morphine in the blood of morphine-naive patients. With respect to the interest of measuring endogenous M6G in pathologies, we provide evidences that our ELISA procedure represents a powerful tool as it can easily and specifically detect endogenous M6G levels.


Subject(s)
Antibodies/chemistry , Morphine Derivatives/blood , Animals , Antibody Specificity , Biomarkers/blood , Case-Control Studies , Critical Illness , Enzyme-Linked Immunosorbent Assay , Humans , Morphine Derivatives/immunology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...