Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Mol Neurobiol ; 61(9): 6264-6278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38289456

ABSTRACT

Epilepsy is characterized by a sustained depolarization and repeated discharge of neurons, attributed to overstimulation of N-methyl-D-aspartate receptors (NMDAr). Herein, we propose that probenecid (PROB), an inhibitor of the activity of some ATP binding-cassette transporters (ABC-transporters) can modify NMDAr activity and expression in amygdaloid kindled model. Some studies have suggested that NMDAr expression could be regulated by inhibiting the activity of P-glycoprotein (MDR1) and drug resistance protein-1 (MRP1). Besides, PROB was found to interact with other proteins with proven activity in the kindling model, such as TRPV2 channels, OAT1, and Panx1. Administering PROB at two doses (100 and 300 mg/kg/d) for 5 d decreased after-discharge duration and Racine behavioral scores. It also reduced the expression of NR2B and the activity of total NOS and the expression of nNOS with respect to the kindling group. In a second protocol, voltage-clamp measurements of NMDA-evoked currents were performed in CA1 hippocampal cells dissociated from control and kindled rats. PROB produced a dose-dependent reduction in NMDA-evoked currents. In neurons from kindled rats, a residual NMDA-evoked current was registered with respect to control animals, while a reduction in NMDA-evoked currents was observed in the presence of 20 mM PROB. Finally, we evaluated the expression of MRP1 and MDR1 in order to establish a relationship between the reduction of kindling parameters, the inhibition of NMDA-type currents, and the expression of these transporters. Based on our results, we conclude that at the concentrations used, PROB inhibits currents evoked by NMDA in dissociated neurons of control and kindled rats. In the kindling model, at the tested doses, PROB decreases the after-discharge duration and Racine behavioral score in the kindling model. We propose a mechanism that could be dependent on the expression of ABC-type transporters.


Subject(s)
Disease Models, Animal , Epilepsy , Kindling, Neurologic , Probenecid , Rats, Wistar , Receptors, N-Methyl-D-Aspartate , Animals , Probenecid/pharmacology , Kindling, Neurologic/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Male , Epilepsy/metabolism , Epilepsy/drug therapy , Epilepsy/physiopathology , Amygdala/metabolism , Amygdala/drug effects , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Rats , Nitric Oxide Synthase Type I/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects
2.
Neuroscience ; 528: 12-25, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536611

ABSTRACT

We employed the whole-cell patch-clamp method and ChAT-Cre mice to study the electrophysiological attributes of cholinergic neurons in the external globus pallidus. Most neurons were inactive, although approximately 20% displayed spontaneous firing, including burst firing. The resting membrane potential, the whole neuron input resistance, the membrane time constant and the total neuron membrane capacitance were also characterized. The current-voltage relationship showed time-independent inward rectification without a "sag". Firing induced by current injections had a brief initial fast adaptation followed by tonic firing with minimal accommodation. Intensity-frequency plots exhibited maximal average firing rates of about 10 Hz. These traits are similar to those of some cholinergic neurons in the basal forebrain. Also, we examined their dopamine sensitivity by acutely blocking dopamine receptors. This action demonstrated that the membrane potential, excitability, and firing pattern of pallidal cholinergic neurons rely on the constitutive activity of dopamine receptors, primarily D2-class receptors. The blockade of these receptors induced a resting membrane potential hyperpolarization, a decrease in firing for the same stimulus, the disappearance of fast adaptation, and the emergence of a depolarization block. This shift in physiological characteristics was evident even when the hyperpolarization was corrected with D.C. current. Neither the currents that generate the action potentials nor those from synaptic inputs were responsible. Instead, our findings suggest, that subthreshold slow ion currents, that require further investigation, are the target of this novel dopaminergic signaling.


Subject(s)
Dopamine , Globus Pallidus , Mice , Animals , Dopamine/physiology , Action Potentials/physiology , Cholinergic Neurons , Receptors, Dopamine , Cholinergic Agents
3.
Front Syst Neurosci ; 16: 975989, 2022.
Article in English | MEDLINE | ID: mdl-36741818

ABSTRACT

A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.

4.
Neuroscience ; 458: 153-165, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33428968

ABSTRACT

Differences in the intrinsic properties of intralaminar thalamo-striatal neurons such as expressing low-threshold-spikes (LTS) or after hyperpolarizing potentials (AHPs) of different duration have been attributed to different maturation stages. However, two morphological types: "diffuse" and "bushy" have been described. Therefore, we explored whether electrophysiological differences persist in adult mice using whole cell recordings. Some recorded neurons were identified by intracellular labeling with biocytin and double labeling with retrograde or anterograde tracings using Cre-mice. We classified these neurons by their AHPs during spontaneous firing. Neurons with long duration AHPs, with fast and slow components, were mostly found in the parafascicular (Pf) nucleus. Neurons with brief AHPs were mainly found in the central lateral (CL) nucleus. However, neurons with both AHPs were found in both nuclei in different proportions. Firing frequency adaptation differed between these neuron classes: those with prolonged AHPs exhibited firing frequency adaptation with fast and slow time constants whereas those with brief AHPs were slow adapters. Neurons with more prolonged AHPs had significant higher input resistances than neurons with brief AHPs. Both cell classes could fire in two modes: trains of single action potentials at depolarized potentials or high frequency bursts on top of LTS at more hyperpolarized potentials. LTS were probably generated by Cav3 calcium channels since they were blocked by the selective antagonist TTA-P2. About 11% of neurons with brief AHPs and 55% of neurons with prolonged AHPs do not show LTS and bursts, even when potassium currents are blocked.


Subject(s)
Corpus Striatum , Neurons , Action Potentials , Animals , Calcium Channels , Mice
5.
Eur J Neurosci ; 53(7): 2149-2164, 2021 04.
Article in English | MEDLINE | ID: mdl-31901201

ABSTRACT

The striatum is the largest entrance to the basal ganglia. Diverse neuron classes make up striatal microcircuit activity, consisting in the sequential activation of neuronal ensembles. How different neuron classes participate in generating ensemble sequences is unknown. In control mus musculus brain slices in vitro, providing excitatory drive generates ensemble sequences. In Parkinsonian microcircuits captured by a highly recurrent ensemble, a cortical stimulus causes a transitory reconfiguration of neuronal groups alleviating Parkinsonism. Alternation between neuronal ensembles needs interconnectivity, in part due to interneurons, preferentially innervated by incoming afferents. One main class of interneuron expresses parvalbumin (PV+ neurons) and mediates feed-forward inhibition. However, its more global actions within the microcircuit are unknown. Using calcium imaging in ex vivo brain slices simultaneously recording dozens of neurons, we aimed to observe the actions of PV+ neurons within the striatal microcircuit. PV+ neurons in active microcircuits are 5%-11% of the active neurons even if, anatomically, they are <1% of the total neuronal population. In resting microcircuits, optogenetic activation of PV+ neurons turns on circuit activity by activating or disinhibiting, more neurons than those actually inhibited, showing that feed-forward inhibition is not their only function. Optostimulation of PV+ neurons in active microcircuits inhibits and activates different neuron sets, resulting in the reconfiguration of neuronal ensembles by changing their functional connections and ensemble membership, showing that neurons may belong to different ensembles at different situations. Our results show that PV+ neurons participate in the mechanisms that generate alternation of neuronal ensembles, therefore provoking ensemble sequences.


Subject(s)
Corpus Striatum , Parvalbumins , Animals , Basal Ganglia/metabolism , Corpus Striatum/metabolism , Interneurons/metabolism , Mice , Neurons/metabolism , Parvalbumins/metabolism
6.
BMC Neurosci ; 19(1): 42, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30012109

ABSTRACT

BACKGROUND: Striatal fast-spiking interneurons (FSI) are a subset of GABAergic cells that express calcium-binding protein parvalbumin (PV). They provide feed-forward inhibition to striatal projection neurons (SPNs), receive cortical, thalamic and dopaminergic inputs and are coupled together by electrical and chemical synapses, being important components of the striatal circuitry. It is known that dopamine (DA) depolarizes FSI via D1-class DA receptors, but no studies about the ionic mechanism of this action have been reported. Here we ask about the ion channels that are the effectors of DA actions. This work studies their Ca2+ currents. RESULTS: Whole-cell recordings in acutely dissociated and identified FSI from PV-Cre transgenic mice were used to show that FSI express an array of voltage gated Ca2+ channel classes: CaV1, CaV2.1, CaV2.2, CaV2.3 and CaV3. However, CaV1 Ca2+ channel carries most of the whole-cell Ca2+ current in FSI. Activation of D1-like class of DA receptors by the D1-receptor selective agonist SKF-81297 (SKF) enhances whole-cell Ca2+ currents through CaV1 channels modulation. A previous block of CaV1 channels with nicardipine occludes the action of the DA-agonist, suggesting that no other Ca2+ channel is modulated by D1-receptor activation. Bath application of SKF in brain slices increases the firing rate and activity of FSI as measured with both whole-cell and Ca2+ imaging recordings. These actions are reduced by nicardipine. CONCLUSIONS: The present work discloses one final effector of DA modulation in FSI. We conclude that the facilitatory action of DA in FSI is in part due to CaV1 Ca2+ channels positive modulation.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium/metabolism , Dopamine Agonists/pharmacology , Animals , Corpus Striatum/drug effects , Dopamine/metabolism , Interneurons/drug effects , Membrane Potentials/drug effects , Mice, Transgenic , Parvalbumins/metabolism
7.
Neural Plast ; 2015: 472676, 2015.
Article in English | MEDLINE | ID: mdl-26113994

ABSTRACT

Striatal projection neurons (SPNs) process motor and cognitive information. Their activity is affected by Parkinson's disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.


Subject(s)
Action Potentials , GABAergic Neurons/physiology , KCNQ Potassium Channels/physiology , Neostriatum/physiology , Synapses/physiology , Action Potentials/drug effects , Animals , Cerebral Cortex/physiology , Cholinergic Neurons/physiology , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Intercellular Signaling Peptides and Proteins , Mice, Transgenic , Muscarine/pharmacology , Muscarinic Agonists/pharmacology , Neostriatum/cytology , Neostriatum/metabolism , Peptides/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
8.
Cell Mol Neurobiol ; 29(5): 719-31, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19350384

ABSTRACT

Neostriatal neurons may undergo events of spontaneous synchronization as those observed in recurrent networks of excitatory neurons, even when cortical afferents are transected. It is necessary to explain these events because the neostriatum is a recurrent network of inhibitory neurons. Synchronization of neuronal activity may be caused by plateau-like depolarizations. Plateau-like orthodromic depolarizations that resemble up-states in medium spiny neostriatal neurons (MSNs) may be induced by a single corticostriatal suprathreshold stimulus. Slow synaptic depolarizations may last hundreds of milliseconds, decay slower than the monosynaptic glutamatergic synaptic potentials that induce them, and sustain repetitive firing. Because inhibitory inputs impinging onto MSNs have a reversal potential above the resting membrane potential but below the threshold for firing, they conform a type of "shunting inhibition". This work asks if shunting GABAergic inputs onto MSNs arrive asynchronously enough as to help in sustaining the plateau-like corticostriatal response after a single cortical stimulus. This may help to begin explaining autonomous processing in the striatal micro-circuitry in the presence of a tonic excitatory drive and independently of spatio-temporally organized inputs. It is shown here that besides synaptic currents from AMPA/KA- and NMDA-receptors, as well as L-type intrinsic Ca(2+)- currents, inhibitory synapses help in maintaining the slow depolarization, although they accomplish the role of depressing firing at the beginning of the response. We then used a NEURON model of spiny cells to show that inhibitory synapses arriving asynchronously on the dendrites can help to simulate a plateau potential similar to that observed experimentally.


Subject(s)
Models, Neurological , Neostriatum/physiology , Neural Inhibition/physiology , Animals , Calcium Signaling , Nerve Net/physiology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Potentials/physiology
9.
Eur J Neurosci ; 26(3): 575-82, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17686038

ABSTRACT

Ryanodine-sensitive intracellular Ca2+ channels (RyRs) are present in suprachiasmatic nuclei (SCN) neurons, but the functions served by these channels are not known. Here we addressed whether mobilization of intracellular Ca2+ stores through the RyRs may be a link between the molecular clock and the firing rate in SCN neurons. Activation of the RyRs by administration of either 1 mM caffeine or 100 nM ryanodine increased the firing frequency, whereas inhibition of RyRs by 10 microM dantrolene or 80 microm ryanodine decreased firing rate. Similar results were obtained in experiments conducted at either midday or midnight. Furthermore, these effects were not mediated by synaptic transmission as blockade of GABA A, AMPA and NMDA receptors did not prevent the excitatory or inhibitory effects induced by either dose of ryanodine on SCN firing. We conclude that gating of RyRs is a key element of the intricate output pathway from the circadian clock within SCN neurons in rats.


Subject(s)
Biological Clocks/physiology , Calcium Signaling/physiology , Circadian Rhythm/physiology , Neurons/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Suprachiasmatic Nucleus/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Biological Clocks/drug effects , Caffeine/pharmacology , Calcium Signaling/drug effects , Circadian Rhythm/drug effects , Dantrolene/pharmacology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Male , Muscle Relaxants, Central/pharmacology , Neurons/drug effects , Patch-Clamp Techniques , Phosphodiesterase Inhibitors/pharmacology , Rats , Rats, Wistar , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Receptors, Glutamate/drug effects , Receptors, Glutamate/metabolism , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Suprachiasmatic Nucleus/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
10.
Synapse ; 60(7): 533-42, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16952159

ABSTRACT

Long term synaptic plasticity has been more extensively studied in excitatory synapses, but it is also a property of inhibitory synapses. Many inhibitory synapses target hippocampal pyramidal neurons of the CA1 region. They originate from several interneuron classes that subdivide the surface area that they target on the pyramidal cell. Thus, many interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Methods to preferentially activate dendritic or somatic inhibitory synapses onto pyramidal neurons have been devised. By using these methods, the present work demonstrates that a stimulation pattern that induces long term potentiation (LTP) in excitatory synapses of the Schaffer collaterals is also capable of inducing distinct types of long term plastic changes in different classes of inhibitory synapses: Induction of long term depression (LTD) was seen in dendritic inhibitory synapses whereas LTP was observed in somatic inhibitory synapses. These findings suggest that inhibitory synapses arising from different interneuron classes may respond to the same stimulus according to their specific plastic potential enabling a spatial combinatorial pattern of inhibitory effects onto the pyramidal cell.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation/physiology , Neural Inhibition/physiology , Neural Pathways/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Dendrites/physiology , Dendrites/ultrastructure , Electric Stimulation , Hippocampus/ultrastructure , Interneurons/physiology , Interneurons/ultrastructure , Male , Neural Pathways/ultrastructure , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Pyramidal Cells/physiology , Pyramidal Cells/ultrastructure , Rats , Rats, Wistar , Synapses/ultrastructure
11.
J Neurosci ; 23(26): 8931-40, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14523095

ABSTRACT

Dopamine is a critical modulator of striatal function; its absence produces Parkinson's disease. Most cellular actions of dopamine are still unknown. This work describes the presynaptic actions of dopaminergic receptor agonists on GABAergic transmission between neostriatal projection neurons. Axon collaterals interconnect projection neurons, the main axons of which project to other basal ganglia nuclei. Most if not all of these projecting axons pass through the globus pallidus. Thus, we lesioned the intrinsic neurons of the globus pallidus and stimulated neostriatal efferent axons antidromically with a bipolar electrode located in this nucleus. This maneuver revealed a bicuculline-sensitive synaptic current while recording in spiny cells. D1 receptor agonists facilitated whereas D2 receptor agonists depressed this synaptic current. In contrast, a bicuculline-sensitive synaptic current evoked by field stimulation inside the neostriatum was not consistently modulated, in agreement with previous studies. The data are discussed in light of the most recent experimental and modeling results. The conclusion was that inhibition of spiny cells by axon collaterals of other spiny cells is quantitatively important; however, to be functionally important, this inhibition might be conditioned to the synchronized firing of spiny neurons. Finally, dopamine exerts a potentially important role regulating the extent of lateral inhibition.


Subject(s)
Axons/physiology , Corpus Striatum/physiology , Dopamine/metabolism , Neurons/physiology , Animals , Axons/drug effects , Corpus Striatum/cytology , Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Electric Stimulation , GABA Antagonists/pharmacology , Globus Pallidus/cytology , Globus Pallidus/drug effects , Globus Pallidus/physiology , In Vitro Techniques , Neostriatum/cytology , Neostriatum/drug effects , Neostriatum/physiology , Neurons/drug effects , Neurons/ultrastructure , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, Dopamine/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL