Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cells ; 13(2)2024 01 16.
Article in English | MEDLINE | ID: mdl-38247862

ABSTRACT

Chemerin is an atypical chemokine first described as a chemoattractant agent for monocytes, natural killer cells, plasmacytoid and myeloid dendritic cells, through interaction with its main receptor, the G protein-coupled receptor chemokine-like receptor 1 (CMKLR1). Chemerin has been studied in various lung disease models, showing both pro- and anti-inflammatory properties. Given the incidence and burden of inflammatory lung diseases from diverse origins (infectious, autoimmune, age-related, etc.), chemerin has emerged as an interesting therapeutical target due to its immunomodulatory role. However, as highlighted by this review, further research efforts to elucidate the mechanisms governing chemerin's dual pro- and anti-inflammatory characteristics are urgently needed. Moreover, although a growing body of evidence suggests chemerin as a potential biomarker for the diagnosis and/or prognosis of inflammatory lung diseases, this review underscores the necessity for standardizing both sampling types and measurement techniques before drawing definitive conclusions.


Subject(s)
Chemokines , Chemotactic Factors , Lung Diseases , Humans , Anti-Inflammatory Agents , Chemokines/metabolism , Dendritic Cells , Lung Diseases/metabolism
2.
Respir Res ; 24(1): 254, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880678

ABSTRACT

BACKGROUND: Fibroblast activation protein-α (FAPα) is a marker of activated fibroblasts that can be selectively targeted by an inhibitor (FAPI) and visualised by PET/CT imaging. We evaluated whether the measurement of FAPα in bronchoalveolar lavage fluids (BALF) and the uptake of FAPI by PET/CT could be used as biomarkers of fibrogenesis. METHODS: The dynamics of lung uptake of 18F-labeled FAPI ([18F]FAPI-74) was assessed in the bleomycin mouse model at various time points and using different concentrations of bleomycin by PET/CT. FAPα was measured in BALFs from these bleomycin-treated and control mice. FAPα levels were also assessed in BALFs from controls and patients with idiopathic pulmonary fibrosis (IPF). RESULTS: Bleomycin-treated mice presented a significantly higher uptake of [18F]FAPI-74 during lung fibrinogenesis (days 10 and 16 after instillation) compared to control mice. No significant difference was observed at initial inflammatory phase (3 days) and when fibrosis was already established (28 days). [18F]FAPI-74 tracer was unable to show a dose-response to bleomycin treatment. On the other hand, BALF FAPα levels were steeply higher in bleomycin-treated mice at day 10 and a significant dose-response effect was observed. Moreover, FAPα levels were strongly correlated with lung fibrosis as measured by the modified Aschroft histological analysis, hydroxyproline and the percentage of weight loss. Importantly, higher levels of FAPα were observed in IPF patients where the disease was progressing as compared to stable patients and controls. Moreover, patients with FAPα BALF levels higher than 192.5 pg/mL presented a higher risk of progression, transplantation or death compared to patients with lower levels. CONCLUSIONS: Our preclinical data highlight a specific increase of [18F]FAPI-74 lung uptake during the fibrotic phase of the bleomycin murine model. The measurement of FAPα in BALF appears to be a promising marker of the fibrotic activity in preclinical models of lung fibrosis and in IPF patients. Further studies are required to confirm the role of FAPα in BALF as biomarker of IPF activity and assess the relationship between FAPα levels in BALF and [18F]FAPI-74 uptake on PET/CT in patients with fibrotic lung disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/drug therapy , Fibrosis , Bronchoalveolar Lavage Fluid , Bleomycin/adverse effects
3.
Front Immunol ; 13: 941663, 2022.
Article in English | MEDLINE | ID: mdl-36032171

ABSTRACT

Background: Chemerin is an extracellular protein with chemotactic activities and its expression is increased in various diseases such as metabolic syndrome and inflammatory conditions. Its role in lung pathology has not yet been extensively studied but both known pro- and anti-inflammatory properties have been observed. The aim of our study was to evaluate the involvement of the chemerin/ChemR23 system in the physiopathology of COVID-19 with a particular focus on its prognostic value. Methods: Blood samples from confirmed COVID-19 patients were collected at day 1, 5 and 14 from admission to Erasme Hospital (Brussels - Belgium). Chemerin concentrations and inflammatory biomarkers were analyzed in the plasma. Blood cells subtypes and their expression of ChemR23 were determined by flow cytometry. The expression of chemerin and ChemR23 was evaluated on lung tissue from autopsied COVID-19 patients by immunohistochemistry (IHC). Results: 21 healthy controls (HC) and 88 COVID-19 patients, including 40 in intensive care unit (ICU) were included. Plasma chemerin concentration were significantly higher in ICU patients than in HC at all time-points analyzed (p<0.0001). Moreover, they were higher in deceased patients compared to survivors (p<0.05). Logistic univariate regression and multivariate analysis demonstrated that chemerin level at day 14 of admission was an independent risk factor for death. Accordingly, chemerin levels correlated with inflammatory biomarkers such as C-reactive protein and tumor necrosis factor α. Finally, IHC analysis revealed a strong expression of ChemR23 on smooth muscle cells and chemerin on myofibroblasts in advanced acute respiratory distress syndrome (ARDS). Discussion: Increased plasma chemerin levels are a marker of severity and may predict death of COVID-19 patients. However, multicentric studies are needed, before chemerin can be considered as a biomarker of severity and death used in daily clinical practice. Further studies are also necessary to identify the precise mechanisms of the chemerin/ChemR23 system in ARDS secondary to viral pneumonia.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Chemokines , Humans , Intercellular Signaling Peptides and Proteins , Receptors, Chemokine , Risk Factors
4.
Virchows Arch ; 479(2): 385-392, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33580806

ABSTRACT

Autopsy is an important quality assurance indicator and a tool to advance medical knowledge. This study aims to compare the premortem clinical and postmortem pathology findings in patients who died in the Intensive Care Unit (ICU), to analyze if there are any discrepancies between them, and to compare the results to two similar studies performed in our institution in 2004 and 2007. Between January 1, 2016, and December 31, 2018, 888 patients died in the ICU and 473 underwent post-mortem examination (PME) of whom 437 were included in the present study. Autopsies revealed discrepancies between clinical diagnosis and pathologic findings according to in 101 cases (23.1%) according to Goldman classification. Forty-eight major discrepancies (class I and class II) were identified in 44 cases and the most frequent identified discrepancies were pulmonary embolism (3/12) as class I and malignancies (13/35) as class II. They were more frequent in patients hospitalized for less than 10 days then in the group with more than 10 days of hospitalization (13.8% vs 4.5%; p = 0.002). No statistical difference has been noticed concerning age, gender, and ICU stay. We observed an increase of performed autopsies and a total discrepancy rate similar to the studies performed in the same institution in 2004 (22.5%) and 2007 (21%). In conclusion, discrepancies between clinical and PME diagnoses persist despite the medical progress. Secondly, the autopsy after a short hospital stay may reveal unexpected findings whose diagnosis is challenging even if it may be suspected by the intensivist.


Subject(s)
Diagnostic Errors , Hospital Mortality , Intensive Care Units , Adult , Aged , Aged, 80 and over , Autopsy , Cause of Death , Female , Humans , Length of Stay , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Time Factors , Young Adult
5.
Front Med (Lausanne) ; 8: 761299, 2021.
Article in English | MEDLINE | ID: mdl-35211479

ABSTRACT

BACKGROUND: Surfactant protein D (SP-D) and pulmonary club cell protein 16 (CC-16) are called "pneumoproteins" and are involved in host defense against oxidative stress, inflammation, and viral outbreak. This study aimed to determine the predictive value of these pneumoproteins on the incidence of acute respiratory distress syndrome (ARDS) or death in patients with coronavirus disease-2019 (COVID-19). METHODS: This retrospective study included 87 patients admitted to an emergency department. Blood samples were collected on three time points (days 1, 5, and 14 from hospital admission). SP-D and CC-16 serum levels were determined, and univariate and multivariate analyses considering confounding variables (age, body mass index, tobacco use, dyspnea, hypertension, diabetes mellitus, neutrophil-to-lymphocyte ratio) were performed. RESULTS: Based on the multivariate analysis, SP-D level on D1 was positively and slightly correlated with subsequent development of ARDS, independent of body mass index, dyspnea, and diabetes mellitus. CC-16 level on D1 was modestly and positively correlated with fatal outcome. A rise in SP-D between D1 and D5 and D1 and D14 had a strong negative association with incidence of ARDS. These associations were independent of tobacco use and neutrophil-to-lymphocyte ratio. CONCLUSIONS: Overall, our data reveal that increase in SP-D levels is a good prognostic factor for patients with COVID-19, and that initial CC-16 levels correlated with slightly higher risk of death. SP-D and CC-16 may prove useful to predict outcomes in patients with COVID-19.

6.
Crit Care ; 24(1): 495, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32787909

ABSTRACT

BACKGROUND: Post-mortem studies can provide important information for understanding new diseases and small autopsy case series have already reported different findings in COVID-19 patients. METHODS: We evaluated whether some specific post-mortem features are observed in these patients and if these changes are related to the presence of the virus in different organs. Complete macroscopic and microscopic autopsies were performed on different organs in 17 COVID-19 non-survivors. Presence of SARS-CoV-2 was evaluated with immunohistochemistry (IHC) in lung samples and with real-time reverse-transcription polymerase chain reaction (RT-PCR) test in the lung and other organs. RESULTS: Pulmonary findings revealed early-stage diffuse alveolar damage (DAD) in 15 out of 17 patients and microthrombi in small lung arteries in 11 patients. Late-stage DAD, atypical pneumocytes, and/or acute pneumonia were also observed. Four lung infarcts, two acute myocardial infarctions, and one ischemic enteritis were observed. There was no evidence of myocarditis, hepatitis, or encephalitis. Kidney evaluation revealed the presence of hemosiderin in tubules or pigmented casts in most patients. Spongiosis and vascular congestion were the most frequently encountered brain lesions. No specific SARS-CoV-2 lesions were observed in any organ. IHC revealed positive cells with a heterogeneous distribution in the lungs of 11 of the 17 (65%) patients; RT-PCR yielded a wide distribution of SARS-CoV-2 in different tissues, with 8 patients showing viral presence in all tested organs (i.e., lung, heart, spleen, liver, colon, kidney, and brain). CONCLUSIONS: In conclusion, autopsies revealed a great heterogeneity of COVID-19-associated organ injury and the remarkable absence of any specific viral lesions, even when RT-PCR identified the presence of the virus in many organs.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Aged , Autopsy , Brain/virology , COVID-19 , Colon/virology , Coronavirus Infections/therapy , Female , Heart/virology , Humans , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spleen/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...