Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 15(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35631390

ABSTRACT

Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study.

2.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35215231

ABSTRACT

The antimicrobial activity and toxicity of three novel synthetic antibacterial agents containing tris(1H-indol-3-yl)methylium fragment were studied in vitro and in vivo. All compounds in vitro revealed high activity (minimal inhibitory concentration (MIC) 0.13-1.0 µg/mL) against bacteria that were either sensitive or resistant to antibiotics, including multidrug-resistant clinical isolates. The derivatives combining high antimicrobial activity with relatively low cytotoxicity against human donor fibroblasts HPF-hTERT were subjected to further testing on mice. In vivo they revealed fairly good tolerance and relatively low toxicity. Acute toxicity was evaluated, and the main indicators of toxicity, including LD50 and LD10, were determined. A study of compounds in vivo showed their efficiency in the model of staphylococcal sepsis in mice. The efficiency of compounds may be due to the ability of indolylmethylium salts to form pores in the cytoplasmic membrane of microbial cells and thereby facilitate the penetration of molecules into the pathogen.

3.
J Antibiot (Tokyo) ; 74(3): 219-224, 2021 03.
Article in English | MEDLINE | ID: mdl-33318623

ABSTRACT

A series of new compounds-arylbis(indol-3-yl)methylium derivatives-were synthesized and their antimicrobial activity was evaluated. All the compounds turned out to be highly active, with MIC depending on their structure and the length of N-alkyl residues. The parent triarylmethane compounds possess weaker activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methane/analogs & derivatives , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Methane/chemical synthesis , Methane/chemistry , Methane/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship
4.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339219

ABSTRACT

The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5-C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 µg/mL. Compounds with C5-C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 µg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 µg/mL) and Klebsiella pneumonia (2 and 8 µg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.

5.
J Antibiot (Tokyo) ; 72(2): 122-124, 2019 02.
Article in English | MEDLINE | ID: mdl-30482908

ABSTRACT

A series of 3,4-bis(arylthio)maleimides were synthesized and their antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria, including multidrug resistant (MDR) strains and some fungi. Most compounds turned out to be highly active, activity being dependent on substituents on phenyl rings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Maleimides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Drug Resistance, Multiple, Bacterial/genetics , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , Maleimides/chemical synthesis , Microbial Sensitivity Tests
6.
Biochem Pharmacol ; 127: 13-27, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27979631

ABSTRACT

The HECT domain-containing E3 ubiquitin ligase NEDD4-1 (Neural precursor cell Expressed Developmentally Down regulated gene 4-1) is frequently overexpressed in human cancers and displays oncogenic-like properties through the ubiquitin-dependent regulation of multiple protein substrates. However, little is known about small molecule enzymatic inhibitors of HECT domain-containing ubiquitin ligases. We now demonstrate that indole-3-carbinol (I3C), a natural anti-cancer phytochemical derived from cruciferous vegetables such as cabbage and broccoli, represents a new chemical scaffold of small molecule enzymatic inhibitors of NEDD4-1. Using in vitro ubiquitination assays, I3C, its stable synthetic derivative 1-benzyl-I3C and five novel synthetic analogues were shown to directly inhibit NEDD4-1 ubiquitination activity. Compared to I3C, which has an IC50 of 284µM, 1-benzyl-I3C was a significantly more potent NEDD4-1 enzymatic inhibitor with an IC50 of 12.3µM. Compounds 2242 and 2243, the two indolecarbinol analogues with added methyl groups that results in a more nucleophilic benzene ring π system, further enhanced potency with IC50s of 2.71µM and 7.59µM, respectively. Protein thermal shift assays that assess small ligand binding, in combination with in silico binding simulations with the crystallographic structure of NEDD4-1, showed that each of the indolecarbinol compounds bind to the purified catalytic HECT domain of NEDD4-1. The indolecarbinol compounds inhibited human melanoma cell proliferation in a manner that generally correlated with their effectiveness as NEDD4-1 enzymatic inhibitors. Taken together, we propose that I3C analogues represent a novel set of anti-cancer compounds for treatment of human melanomas and other cancers that express indolecarbinol-sensitive target enzymes.


Subject(s)
Antineoplastic Agents/chemistry , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Indoles/chemistry , Ubiquitin-Protein Ligases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Melanoma , Molecular Docking Simulation , Nedd4 Ubiquitin Protein Ligases , Structure-Activity Relationship
7.
J Photochem Photobiol B ; 162: 570-576, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27475780

ABSTRACT

Triarylmethane derivatives are extensively investigated as antitumor and antibacterial drug candidates alone and as photoactivatable compounds. In the series of tris(1-alkylindol-3-yl)methylium salts (TIMs) these two activities differed depending on the length of N-alkyl chain, with C4-5 derivatives being the most potent compared to the shorter or longer chain analogs and to the natural compound turbomycin A (no N-substituent). Given that the human serum albumin (HSA) is a major transporter protein with which TIMs can form stable complexes, and that the formation of these complexes might be advantageous for phototoxicity of TIMs we determined the quantitative parameters of TIMs-HSA binding using spectroscopic methods and molecular docking. TIMs bound to HSA (1:1 stoichiometry) altered the protein's secondary structure by changing the α-helix/ß-turn ratio. The IIa subdomain (Sudlow site I) is the preferred TIM binding site in HSA as determined in competition experiments with reference drugs ibuprofen and warfarin. The values of binding constants increased with the number of CH2 groups from 0 to 6 and then dropped down for C10 compound, a dependence similar to the one observed for cytocidal potency of TIMs. We tend to attribute this non-linear dependence to an interplay between hydrophobicity and steric hindrance, the two key characteristics of TIMs-HSA complexes calculated in the molecular docking procedure. These structure-activity relationships provide evidence for rational design of TIMs-based antitumor and antimicrobial drugs.


Subject(s)
Indoles/metabolism , Serum Albumin/metabolism , Binding Sites , Circular Dichroism , Humans , Ibuprofen/chemistry , Ibuprofen/metabolism , Indoles/chemistry , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Salts/chemistry , Serum Albumin/chemistry , Spectrometry, Fluorescence , Thermodynamics , Warfarin/chemistry , Warfarin/metabolism
8.
Bioorg Med Chem ; 18(18): 6905-13, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20708939

ABSTRACT

Novel derivatives of tris(indol-3-yl)methane and tris(indol-3-yl)methylium salts with the alkyl substituents at the N-atoms of the indole rings were synthesized. An easy substitution of indole rings in trisindolylmethanes for other indoles under the action of acids is demonstrated, and the mechanism of substitution is discussed. To obtain trisindolylmethylium salts, the environmentally safe method of oxidation of trisindolylmethanes with air oxygen in acidic conditions was developed. Tris(1-alkylindol-3-yl)methanes and tris(1-alkylindol-3-yl)methylium salts represent three-bladed molecular propellers whose physico-chemical and biological properties strongly depend on the N-alkyl substituent. The cytotoxicity of novel compounds increased with the number of C atoms in the alkyl chains, with optimal number n=3-5 whereas the derivatives with longer side chains were less cytotoxic. The most potent novel compounds killed human tumor cells at nanomolar-to-submicromolar concentrations, being one order of magnitude more potent than the prototype antibiotic turbomycin A [tris(indol-3-yl)methylium salt]. Apoptosis in HCT116 colon carcinoma cell line induced by tris(1-pentyl-1H-indol-3-yl)methylium methanesulfonate was detectable at concentrations tolerable by normal blood lymphocytes. Thus, N-alkyl substituted tris(1-alkylindol-3-yl)methylium salts emerge as perspective anticancer drug candidates.


Subject(s)
Antineoplastic Agents/chemical synthesis , Indoles/chemistry , Methane/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Line, Tumor , Humans , Indoles/chemical synthesis , Indoles/toxicity , Methane/chemistry , Salts/chemistry
9.
Chem Biol Interact ; 186(3): 255-66, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20570586

ABSTRACT

Indole-3-carbinol (I3C), a natural autolysis product of a gluccosinolate present in Brassica vegetables such as broccoli and cabbage, has anti-proliferative and anti-estrogenic activities in human breast cancer cells. A new and significantly more potent I3C analogue, 1-benzyl-I3C was synthesized, and in comparison to I3C, this novel derivative displayed an approximate 1000-fold enhanced potency in suppressing the growth of both estrogen responsive (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells (I3C IC(50) of 52 microM, and 1-benzyl-I3C IC(50) of 0.05 microM). At significantly lower concentrations, 1-benzyl-I3C induced a robust G1 cell cycle arrest and elicited the key I3C-specific effects on expression and activity of G1-acting cell cycle genes including the disruption of endogenous interactions of the Sp1 transcription factor with the CDK6 promoter. Furthermore, in estrogen responsive MCF-7 cells, with enhanced potency 1-benzyl-I3C down-regulated production of estrogen receptor-alpha protein, acts with tamoxifen to arrest breast cancer cell growth more effectively than either compound alone, and inhibited the in vivo growth of human breast cancer cell-derived tumor xenografts in athymic mice. Our results implicate 1-benzyl-I3C as a novel, potent inhibitor of human breast cancer proliferation and estrogen responsiveness that could potentially be developed into a promising therapeutic agent for the treatment of indole-sensitive cancers.


Subject(s)
Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Antagonists/chemistry , Estrogen Antagonists/therapeutic use , Indoles/chemistry , Indoles/therapeutic use , Animals , Anticarcinogenic Agents/chemical synthesis , Anticarcinogenic Agents/pharmacology , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology , Benzyl Compounds/therapeutic use , Brassica/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , DNA/metabolism , Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Mice , Mice, Nude , Sp1 Transcription Factor/metabolism
10.
Carbohydr Res ; 338(2): 143-52, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12526838

ABSTRACT

Alkaline degradation of the ascorbigen 2-C-[(indol-3-yl)methyl]-alpha-L-xylo-hex-3-ulofuranosono-1,4-lactone (1a) led to a mixture of 1-deoxy-1-(indol-3-yl)-L-sorbose (2a) and 1-deoxy-1-(indol-3-yl)-L-tagatose (3a). The mixture of diastereomeric ketoses underwent acetylation and pyranose ring opening under the action of acetic anhydride in pyridine in the presence of 4-dimethylaminopyridine (DMAP) with the formation of a mixture of (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-xylo-hex-1-enitol (4a) and (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-lyxo-hex-1-enitol (5a), which were separated chromatographically. Deacetylation of 4a or 5a afforded cyclised tetrols, tosylation of which in admixture resulted in 1-deoxy-1-(indol-3-yl)-3,5-di-O-tosyl-alpha-L-sorbopyranose (12a) and 1-deoxy-1-(indol-3-yl)-4,5-di-O-tosyl-alpha-L-tagatopyranose (13a). Under alkaline conditions 13a readily formed 2-hydroxy-4-hydroxymethyl-3-(indol-3-yl)cyclopenten-2-one (15a) in 90% yield. Similar transformations were performed for N-methyl- and N-methoxyindole derivatives.


Subject(s)
Ascorbic Acid/analogs & derivatives , Hexoses/chemical synthesis , Sorbose/analogs & derivatives , Alkalies , Ascorbic Acid/chemistry , Indoles/chemistry , Magnetic Resonance Spectroscopy , Sorbose/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...