Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36765562

ABSTRACT

Due to possible diagnostic misjudgment of tumor resectability, patients with pancreatic ductal adenocarcinoma (PDAC) might be exposed to non-radical resection or unnecessary laparotomy. With small extracellular vesicles (sEV) obtained by liquid biopsy, we aimed to evaluate their potential as biomarkers of tumor resectability, radicality of resection and overall survival (OS). Our prospective study included 83 PDAC patients undergoing surgery with curative intent followed-up longitudinally. sEV were isolated from plasma, and their concentration and size were determined. Fifty patients underwent PDAC resection, and thirty-three had no resection. Preoperatively, patients undergoing resection had higher sEV concentrations than those without resection (p = 0.023). Resection was predicted at the cutoff value of 1.88 × 109/mL for preoperative sEV concentration (p = 0.023) and the cutoff value of 194.8 nm for preoperative mean diameter (p = 0.057). Furthermore, patients with R0 resection demonstrated higher preoperative plasma sEV concentrations than patients with R1/R2 resection (p = 0.014). If sEV concentration was above 1.88 × 109/mL or if the mean diameter was below 194.8 nm, patients had significantly longer OS (p = 0.018 and p = 0.030, respectively). Our proof-of-principle study identified preoperative sEV characteristics as putative biomarkers of feasibility and radicality of PDAC resection that also enable discrimination of patients with worse OS. Liquid biopsy with sEV could aid in PDAC patient stratification and treatment optimization in the future.

2.
Fungal Biol Biotechnol ; 9(1): 16, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36320088

ABSTRACT

Extracellular vesicles (EVs) are increasingly recognized as an important mechanism for cell-cell interactions. Their role in fungi is still poorly understood and they have been isolated from only a handful of species. Here, we isolated and characterized EVs from Aureobasidium pullulans, a biotechnologically important black yeast-like fungus that is increasingly used for biocontrol of phytopathogenic fungi and bacteria. After optimization of the isolation protocol, characterization of EVs from A. pullulans by transmission electron microscopy (TEM) revealed a typical cup-shaped morphology and different subpopulations of EVs. These results were confirmed by nanoparticle tracking analysis (NTA), which revealed that A. pullulans produced 6.1 × 108 nanoparticles per milliliter of culture medium. Proteomic analysis of EVs detected 642 proteins. A small fraction of them had signal peptides for secretion and transmembrane domains. Proteins characteristic of different synthesis pathways were found, suggesting that EVs are synthesized by multiple pathways in A. pullulans. Enrichment analysis using Gene Ontology showed that most of the proteins found in the EVs were associated with primary metabolism. When sequencing the small RNA fraction of A. pullulans EVs, we found two hypothetical novel mil-RNAs. Finally, we tested the biocontrol potential of EVs from A. pullulans. The EVs did not inhibit the germination of spores of three important phytopathogenic fungi-Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. However, exposure of grown cultures of C. acutatum and P. expansum to A. pullulans EVs resulted in visible changes in morphology of colonies. These preliminary results suggest that EVs may be part of the antagonistic activity of A. pullulans, which is so far only partially understood. Thus, the first isolation and characterization of EVs from A. pullulans provides a starting point for further studies of EVs in the biotechnologically important traits of the biocontrol black fungus A. pullulans in particular and in the biological role of fungal EVs in general.

3.
Biomedicines ; 10(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35740275

ABSTRACT

Extracellular vesicles (EVs) are membranous structures in biofluids with enormous diagnostic/prognostic potential for application in liquid biopsies. Any such downstream application requires a detailed characterization of EV concentration, size and morphology. This study aimed to observe the native morphology of EVs in human cerebrospinal fluid after traumatic brain injury. Therefore, they were separated by gravity-driven size-exclusion chromatography (SEC) and investigated by atomic force microscopy (AFM) in liquid and cryogenic transmission electron microscopy (cryo-TEM). The enrichment of EVs in early SEC fractions was confirmed by immunoblot for transmembrane proteins CD9 and CD81. These fractions were then pooled, and the concentration and particle size distribution were determined by Tunable Resistive Pulse Sensing (around 1010 particles/mL, mode 100 nm) and Nanoparticle Tracking Analysis (around 109 particles/mL, mode 150 nm). Liquid AFM and cryo-TEM investigations showed mode sizes of about 60 and 90 nm, respectively, and various morphology features. AFM revealed round, concave, multilobed EV structures; and cryo-TEM identified single, double and multi-membrane EVs. By combining AFM for the surface morphology investigation and cryo-TEM for internal structure differentiation, EV morphological subpopulations in cerebrospinal fluid could be identified. These subpopulations should be further investigated because they could have different biological functions.

4.
J Pers Med ; 11(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525618

ABSTRACT

Better preoperative characterization of patients with pancreatic ductal adenocarcinoma (PDAC) would aid in treatment optimization. Extracellular vesicles (EV) are promising, largely unexplored biomarkers in PDAC. This study aimed to evaluate if plasma EV characteristics are associated with PDAC clinical characteristics and overall survival (OS). The prospective cohort included 34 PDAC patients undergoing surgery with curative intent. Patient data and plasma samples were collected preoperatively, intraoperatively and one month postoperatively. Small plasma EV (sEV) concentration and size were determined by nanoparticle-tracking analysis. A Mann-Whitney test, Spearman's rho and Cox regression were used in statistical analysis. Preoperatively, patients with poorly differentiated tumors had significantly larger plasma sEVs when compared to patients with well/moderately differentiated tumors (mean diameter 176.9 vs. 149.2 nm, p = 0.021), the sEV size even enabling discrimination of the two groups (AUC = 0.742, 95% CI = 0.560-0.923). Plasma sEV characteristics were also a predictor of OS in multivariable analysis. Patients with a more than 33.8% increase in sEV concentration after one month had 7.2 months shorter median OS (p = 0.002), while patients with a more than 28.0% decrease in sEV size had 9.2 months shorter median OS (p = 0.045). Plasma sEV concentration and size correlate with tumor differentiation and may predict OS in PDAC patients. In the future, plasma sEV characteristics could contribute to improved patient stratification for optimized treatment.

5.
Cells ; 9(4)2020 04 14.
Article in English | MEDLINE | ID: mdl-32295162

ABSTRACT

The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths, and dishwashers. Here, we show that the selected strain, EXF-10123, is polymorphic, can grow at 37 °C, is able to assimilate aromatic hydrocarbons (toluene, mineral oil, n-hexadecane), and shows abundant growth with selected neurotransmitters (acetylcholine, gamma-aminobutyric acid, glycine, glutamate, and dopamine) as sole carbon sources. We have for the first time demonstrated the effect of E. dermatitidis on neuroblastoma cell model SH-SY5Y. Aqueous and organic extracts of E. dermatitidis biomass reduced SH-SY5Y viability by 51% and 37%, respectively. Melanized extracellular vesicles (EVs) prepared from this strain reduced viability of the SH-SY5Y to 21%, while non-melanized EVs were considerably less neurotoxic (79% viability). We also demonstrated direct interactions of E. dermatitidis with SH-SY5Y by scanning electron and confocal fluorescence microscopy. The observed invasion and penetration of neuroblastoma cells by E. dermatitidis hyphae presumably causes the degradation of most neuroblastoma cells in only three days. This may represent a so far unknown indirect or direct cause for the development of some neurodegenerative diseases such as Alzheimer's.


Subject(s)
Cell Death/physiology , Exophiala/pathogenicity , Neuroblastoma/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...