Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464209

ABSTRACT

Classifying systemic inflammatory disorders as autoinflammatory or autoimmune provides insight into disease pathogenesis and whether treatment should target innate molecules and their signaling pathways or the adaptive immune response. COPA syndrome is a monogenic disorder of immune dysregulation that leads to interstitial lung disease and high-titer autoantibodies. Studies show constitutive activation of the innate immune molecule STING is centrally involved in disease. However, the mechanisms by which STING results in loss of T cell tolerance and autoimmunity in COPA syndrome or more common autoimmune diseases is not understood. Using CopaE241K/+ mice, we uncovered a functional role for STING in the thymus. Single cell data of human thymus demonstrates STING is highly expressed in medullary thymic epithelial cells (mTECs) involved in processing and presenting self-antigens to thymocytes. In CopaE241K/+ mice, activated STING in mTECs triggered interferon signaling, impaired macroautophagy and caused a defect in negative selection of T cells. Wild-type mice given a systemic STING agonist phenocopied the selection defect and showed enhanced thymic escape of a T cell clone targeting a self-antigen also expressed in melanoma. Our work demonstrates STING activation in TECs shapes the T cell repertoire and contributes to autoimmunity, findings important for settings that activate thymic STING.

2.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37163026

ABSTRACT

Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases (CTD). Establishing autoimmunity in ILD impacts prognosis and treatment. ILD patients are screened for autoimmunity by assaying for anti-nuclear autoantibodies, rheumatoid factors and other non-specific tests. However, this approach has not been rigorously validated and may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. Here, we use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct a large, multi-center unbiased autoantibody discovery screen of ILD patients and controls. PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among these 17 candidates, we validated Cadherin Related Family Member 5 (CDHR5) as an autoantigen and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, subjects not previously diagnosed with autoimmunity. Lung tissue of CDHR5 autoreactive patients showed transcriptional profiles consistent with activation of NFκB signaling and upregulation of chitotriosidase (CHIT1), a molecular pathway linked to fibrosis. Our study shows PhIP-Seq uncovers novel autoantibodies in ILD patients not revealed by standard clinical tests. Furthermore, CDHR5 autoantibodies may define a novel molecular endotype of ILD characterized by inflammation and fibrosis.

3.
medRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214861

ABSTRACT

Interstitial lung diseases (ILD) are heterogeneous conditions that may lead to progressive fibrosis and death of affected individuals. Despite diversity in clinical manifestations, enlargement of lung-associated lymph nodes (LLN) in fibrotic ILD patients predicts worse survival. Herein, we revealed a common adaptive immune landscape in LLNs of all ILD patients, characterized by highly activated germinal centers and antigen-activated T cells including regulatory T cells (Tregs). In support of these findings, we identified serum reactivity to 17 candidate auto-antigens in ILD patients through a proteome-wide screening using phage immunoprecipitation sequencing. Autoantibody responses to actin binding LIM protein 1 (ABLIM1), a protein highly expressed in aberrant basaloid cells of fibrotic lungs, were correlated with LLN frequencies of T follicular helper cells and Tregs in ILD patients. Together, we demonstrate that end-stage ILD patients have converging immune mechanisms, in part driven by antigen-specific immune responses, which may contribute to disease progression.

4.
J Exp Med ; 217(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32725126

ABSTRACT

Pathogenic COPA variants cause a Mendelian syndrome of immune dysregulation with elevated type I interferon signaling. COPA is a subunit of coat protein complex I (COPI) that mediates Golgi to ER transport. Missense mutations of the COPA WD40 domain impair binding and sorting of proteins targeted for ER retrieval, but how this causes disease remains unknown. Given the importance of COPA in Golgi-ER transport, we speculated that type I interferon signaling in COPA syndrome involves missorting of STING. We show that a defect in COPI transport causes ligand-independent activation of STING. Furthermore, SURF4 is an adapter molecule that facilitates COPA-mediated retrieval of STING at the Golgi. Activated STING stimulates type I interferon-driven inflammation in CopaE241K/+ mice that is rescued in STING-deficient animals. Our results demonstrate that COPA maintains immune homeostasis by regulating STING transport at the Golgi. In addition, activated STING contributes to immune dysregulation in COPA syndrome and may be a new molecular target in treating the disease.


Subject(s)
Coatomer Protein/genetics , Coatomer Protein/metabolism , Immune System Diseases/genetics , Membrane Proteins/metabolism , Animals , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Gene Knock-In Techniques , Golgi Apparatus/metabolism , HEK293 Cells , Homeostasis/immunology , Humans , Interferon Type I/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense , Protein Transport/genetics , Signal Transduction/genetics , Syndrome , Transfection
5.
J Immunol ; 204(9): 2360-2373, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32198142

ABSTRACT

COPA syndrome is a recently described Mendelian autoimmune disorder caused by missense mutations in the coatomer protein complex subunit α (COPA) gene. Patients with COPA syndrome develop arthritis and lung disease that presents as pulmonary hemorrhage or interstitial lung disease (ILD). Immunosuppressive medications can stabilize the disease, but many patients develop progressive pulmonary fibrosis, which requires life-saving measures, such as lung transplantation. Because very little is understood about the pathogenesis of COPA syndrome, it has been difficult to devise effective treatments for patients. To date, it remains unknown which cell types are critical for mediating the disease as well as the mechanisms that lead to autoimmunity. To explore these issues, we generated a CopaE241K/+ germline knock-in mouse bearing one of the same Copa missense mutations in patients. Mutant mice spontaneously developed ILD that mirrors lung pathology in patients, as well as elevations of activated cytokine-secreting T cells. In this study, we show that mutant Copa in epithelial cells of the thymus impairs the thymic selection of T cells and results in both an increase in autoreactive T cells and decrease in regulatory T cells in peripheral tissues. We demonstrate that T cells from CopaE241K/+ mice are pathogenic and cause ILD through adoptive transfer experiments. In conclusion, to our knowledge, we establish a new mouse model of COPA syndrome to identify a previously unknown function for Copa in thymocyte selection and demonstrate that a defect in central tolerance is a putative mechanism by which COPA mutations lead to autoimmunity in patients.


Subject(s)
Autoimmunity/immunology , Coatomer Protein/immunology , Immune Tolerance/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Adoptive Transfer/methods , Animals , Autoimmunity/genetics , Coatomer Protein/genetics , Disease Models, Animal , Epithelial Cells/immunology , Female , Immune Tolerance/genetics , Lung/immunology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/immunology , Mice , Mice, Inbred C57BL , Mice, Nude , Mutation/genetics , Mutation/immunology , Syndrome
6.
ERJ Open Res ; 4(2)2018 Apr.
Article in English | MEDLINE | ID: mdl-29977900

ABSTRACT

The COPA syndrome is a monogenic, autoimmune lung and joint disorder first identified in 2015. This study sought to define the main pulmonary features of the COPA syndrome in an international cohort of patients, analyse patient responses to treatment and highlight when genetic testing should be considered. We established a cohort of subjects (N=14) with COPA syndrome seen at multiple centres including the University of California, San Francisco, CA, USA. All subjects had one of the previously established mutations in the COPA gene, and had clinically apparent lung disease and arthritis. We analysed cohort characteristics using descriptive statistics. All subjects manifested symptoms before the age of 12 years, had a family history of disease, and developed diffuse parenchymal lung disease and arthritis. 50% had diffuse alveolar haemorrhage. The most common pulmonary findings included cysts on chest computed tomography and evidence of follicular bronchiolitis on lung biopsy. All subjects were positive for anti-neutrophil cytoplasmic antibody, anti-nuclear antibody or both and 71% of subjects had rheumatoid factor positivity. All subjects received immunosuppressive therapy. COPA syndrome is an autoimmune disorder defined by diffuse parenchymal lung disease and arthritis. We analysed an international cohort of subjects with genetically confirmed COPA syndrome and found that common pulmonary features included cysts, follicular bronchiolitis and diffuse alveolar haemorrhage. Common extrapulmonary features included early age of onset, family history of disease, autoantibody positivity and arthritis. Longitudinal data demonstrated improvement on chest radiology but an overall decline in pulmonary function despite chronic treatment.

7.
Nat Genet ; 47(6): 654-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25894502

ABSTRACT

Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.


Subject(s)
Arthritis/genetics , Autoimmune Diseases/genetics , Coatomer Protein/genetics , Golgi Apparatus/metabolism , Lung Diseases, Interstitial/genetics , Amino Acid Sequence , Child, Preschool , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Female , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Infant , Lod Score , Male , Molecular Sequence Data , Pedigree , Protein Transport
8.
Sci Transl Med ; 5(206): 206ra139, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24107778

ABSTRACT

Interstitial lung disease (ILD) is a complex and heterogeneous disorder that is often associated with autoimmune syndromes. Despite the connection between ILD and autoimmunity, it remains unclear whether ILD can develop from an autoimmune response that specifically targets the lung parenchyma. We examined a severe form of autoimmune disease, autoimmune polyglandular syndrome type 1 (APS1), and established a strong link between an autoimmune response to the lung-specific protein BPIFB1 (bactericidal/permeability-increasing fold-containing B1) and clinical ILD. Screening of a large cohort of APS1 patients revealed autoantibodies to BPIFB1 in 9.6% of APS1 subjects overall and in 100% of APS1 subjects with ILD. Further investigation of ILD outside the APS1 disorder revealed BPIFB1 autoantibodies present in 14.6% of patients with connective tissue disease-associated ILD and in 12.0% of patients with idiopathic ILD. The animal model for APS1, Aire⁻/⁻ mice, harbors autoantibodies to a similar lung antigen (BPIFB9); these autoantibodies are a marker for ILD. We found that a defect in thymic tolerance was responsible for the production of BPIFB9 autoantibodies and the development of ILD. We also found that immunoreactivity targeting BPIFB1 independent of a defect in Aire also led to ILD, consistent with our discovery of BPIFB1 autoantibodies in non-APS1 patients. Overall, our results demonstrate that autoimmunity targeting the lung-specific antigen BPIFB1 may contribute to the pathogenesis of ILD in patients with APS1 and in subsets of patients with non-APS1 ILD, demonstrating the role of lung-specific autoimmunity in the genesis of ILD.


Subject(s)
Autoantigens/immunology , Carrier Proteins/metabolism , Glycoproteins/metabolism , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Lung/immunology , Lung/pathology , Proteins/metabolism , Adoptive Transfer , Animals , Autoantibodies/immunology , Autoantigens/metabolism , Autoimmunity/immunology , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , Fatty Acid-Binding Proteins , Genotype , Humans , Immune Tolerance/immunology , Mice , Organ Specificity , Polyendocrinopathies, Autoimmune/immunology , Radioligand Assay , Reproducibility of Results , Thymus Gland/immunology , Thymus Gland/transplantation , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , AIRE Protein
9.
Circulation ; 124(17): 1838-47, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21947295

ABSTRACT

BACKGROUND: A variety of studies carried out using either human subjects or laboratory animals suggest that vitamin D and its analogues possess important beneficial activity in the cardiovascular system. Using Cre-Lox technology we have selectively deleted the vitamin D receptor (VDR) gene in the cardiac myocyte in an effort to better understand the role of vitamin D in regulating myocyte structure and function. METHODS AND RESULTS: Targeted deletion of the exon 4 coding sequence in the VDR gene resulted in an increase in myocyte size and left ventricular weight/body weight versus controls both at baseline and following a 7-day infusion of isoproterenol. There was no increase in interstitial fibrosis. These knockout mice demonstrated a reduction in end-diastolic and end-systolic volume by echocardiography, activation of the fetal gene program (ie, increased atrial natriuretic peptide and alpha skeletal actin gene expression), and increased expression of modulatory calcineurin inhibitory protein 1 (MCIP1), a direct downstream target of calcineurin/nuclear factor of activated T cell signaling. Treatment of neonatal cardiomyocytes with 1,25-dihydroxyvitamin D partially reduced isoproterenol-induced MCIP1 mRNA and protein levels and MCIP1 gene promoter activity. CONCLUSIONS: Collectively, these studies demonstrate that the vitamin D-VDR signaling system possesses direct, antihypertrophic activity in the heart. This appears to involve, at least in part, suppression of the prohypertrophic calcineurin/NFAT/MCIP1 pathway. These studies identify a potential mechanism to account for the reported beneficial effects of vitamin D in the cardiovascular system.


Subject(s)
Cardiomegaly/etiology , Cardiomegaly/genetics , Gene Deletion , Myocytes, Cardiac/metabolism , Receptors, Calcitriol/deficiency , Receptors, Calcitriol/genetics , Animals , Cardiomegaly/metabolism , Gene Targeting , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology
10.
J Steroid Biochem Mol Biol ; 122(5): 326-32, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20813185

ABSTRACT

We have explored the mechanism(s) underlying 1,25 dihydroxyvitamin D's (1,25(OH)(2)D) suppression of agonist-induced vascular smooth muscle cell (VSMC) proliferation. Quiescent cultured adult rat VSMC were treated with 1,25(OH)(2)D for 48h and endothelin (ET) or angiotensin II (AII) for the final 24h. We show that VSMC responded to 1,25(OH)(2)D or its less hypercalcemic analogue RO 25-6760 with ∼70% inhibition of ET-dependent (3)H-thymidine incorporation. The inhibition was linked to a comparable reduction in ET-stimulated cyclin-dependent kinase 2 (Cdk2) activity and suppression of an ET-induced Cdk2 activator, cell division cycle 25 homolog A (Cdc25A). Both 1,25(OH)(2)D and RO 25-6760 completely inhibited the ET-dependent increase in Cdc25A mRNA and protein levels, phosphatase and promoter activities. 1,25(OH)(2)D also suppressed AII-induced DNA synthesis, Cdk2 activity and Cdc25A gene transcription. Inhibition of Cdc25A gene expression using a siRNA approach resulted in significant inhibition of ET or AII-dependent Cdk2 activity and (3)H-thymidine incorporation. The Cdc25A siRNA-mediated inhibition of ET or AII-induced Cdk2 activity and DNA synthesis was not additive with that produced by 1,25(OH)(2)D treatment. These data demonstrate that 1,25(OH)(2)D inhibits VSMC proliferation through a Cdc25A-dependent mechanism and suggest that this hormone may prove useful in the management of disorders characterized by aberrant proliferation of VSMC in the vascular wall.


Subject(s)
Calcitriol/pharmacology , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/cytology , cdc25 Phosphatases/physiology , Angiotensin II/pharmacology , Animals , Cells, Cultured , Cholecalciferol/analogs & derivatives , Cholecalciferol/pharmacology , Cyclin-Dependent Kinase 2/metabolism , Endothelins/pharmacology , Rats
11.
Biochemistry ; 49(17): 3733-42, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20307057

ABSTRACT

Juvenile hormone (JH) is a key insect developmental hormone that is found at low nanomolar levels in larval insects. The methyl ester of JH is hydrolyzed in many insects by an esterase that shows high specificity for JH. We have previously determined a crystal structure of the JH esterase (JHE) of the tobacco hornworm Manduca sexta (MsJHE) [Wogulis, M., Wheelock, C. E., Kamita, S. G., Hinton, A. C., Whetstone, P. A., Hammock, B. D., and Wilson, D. K. (2006) Biochemistry 45, 4045-4057]. Our molecular modeling indicates that JH fits very tightly within the substrate binding pocket of MsJHE. This tight fit places two noncatalytic amino acid residues, Phe-259 and Thr-314, within the appropriate distance and geometry to potentially interact with the alpha,beta-unsaturated ester and epoxide, respectively, of JH. These residues are highly conserved in numerous biologically active JHEs. Kinetic analyses of mutants of Phe-259 or Thr-314 indicate that these residues contribute to the low K(M) that MsJHE shows for JH. This low K(M), however, comes at the cost of reduced substrate turnover. Neither nucleophilic attack of the resonance-stabilized ester by the catalytic serine nor the availability of a water molecule for attack of the acyl-enzyme intermediate appears to be a rate-determining step in the hydrolysis of JH by MsJHE. We hypothesize that the release of the JH acid metabolite from the substrate binding pocket limits the catalytic cycle. Our findings also demonstrate that chemical bond strength does not necessarily correlate with how reactive the bond will be to metabolism.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Manduca/enzymology , Phenylalanine/physiology , Sesquiterpenes/metabolism , Threonine/physiology , Animals , Binding Sites , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Chromatography, Thin Layer , Hydrolysis , Kinetics , Larva , Models, Molecular , Mutation/genetics , Substrate Specificity
12.
J Steroid Biochem Mol Biol ; 118(3): 135-41, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19961935

ABSTRACT

1,25 dihydroxyvitamin D(3) (1,25 (OH)2 D) and its less hypercalcemic analogues have been shown to inhibit the proliferation of vascular smooth muscle cells (VSMC) in culture. However, the mechanism(s) underlying this suppression is not well understood. Here we have shown that 1,25 (OH)2 D and its analogues (RO-25-6760 and RO-23-7553) inhibit endothelin (ET)-dependent DNA synthesis and cell proliferation in neonatal rat aortic VSMC. While ET stimulation of mitogenic activity requires activation of the MEK/ERK signal transduction cascade, 1,25 (OH)2 D neither affected the ET-dependent activation of ERK nor synergized with the MEK inhibitor PD98059 in reducing DNA synthesis in these cultures, implying that the locus of 1,25 (OH)2 D actions lies between ERK and the cell cycle machinery. 1,25 (OH)2 D suppressed ET-induced activation of cyclin-dependent kinase 2 (Cdk2), a key cell cycle kinase, but had no effect on the expression of this protein. Collectively, the data identify Cdk2 as the target of 1,25 (OH)2 D in the cell cycle machinery and imply a potential role for 1,25 (OH)2 D, or its less hypercalcemic analogues, in the treatment of disorders of VSMC proliferation involving the vascular wall.


Subject(s)
Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Signal Transduction/drug effects , Vitamin D/pharmacology , Animals , Animals, Newborn , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Cells, Cultured , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Kinase Inhibitors/pharmacology , Rats , Receptors, Calcitriol/metabolism , Signal Transduction/physiology , Vitamin D/analogs & derivatives
13.
J Clin Invest ; 119(6): 1647-58, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19436108

ABSTRACT

In various mammalian species, including humans, water restriction leads to an acute increase in urinary sodium excretion. This process, known as dehydration natriuresis, helps prevent further accentuation of hypernatremia and the accompanying rise in extracellular tonicity. Serum- and glucocorticoid-inducible kinase (Sgk1), which is expressed in the renal medulla, is regulated by extracellular tonicity. However, the mechanism of its regulation and the physiological role of hypertonicity-induced SGK1 gene expression remain unclear. Here, we identified a tonicity-responsive enhancer (TonE) upstream of the rat Sgk1 transcriptional start site. The transcription factor NFAT5 associated with TonE in a tonicity-dependent fashion in cultured rat renal medullary cells, and selective blockade of NFAT5 activity resulted in suppression of the osmotic induction of the Sgk1 promoter. In vivo, water restriction of rats or mice led to increased urine osmolality, increased Sgk1 expression, increased expression of the type A natriuretic peptide receptor (NPR-A), and dehydration natriuresis. In cultured rat renal medullary cells, siRNA-mediated Sgk1 knockdown blocked the osmotic induction of natriuretic peptide receptor 1 (Npr1) gene expression. Furthermore, Npr1-/- mice were resistant to dehydration natriuresis, which suggests that Sgk1-dependent activation of the NPR-A pathway may contribute to this response. Collectively, these findings define a specific mechanistic pathway for the osmotic regulation of Sgk1 gene expression and suggest that Sgk1 may play an important role in promoting the physiological response of the kidney to elevations in extracellular tonicity.


Subject(s)
Dehydration/metabolism , Immediate-Early Proteins/metabolism , Natriuresis , Protein Serine-Threonine Kinases/metabolism , Animals , Dehydration/genetics , Gene Expression Regulation , Immediate-Early Proteins/genetics , Isotonic Solutions , Male , Mice , Mice, Knockout , Mutation/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering/genetics , Rats , Receptors, Atrial Natriuretic Factor/deficiency , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism
14.
Hypertension ; 52(6): 1106-12, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18936343

ABSTRACT

The liganded vitamin D receptor (VDR) is thought to play an important role in controlling cardiac function. Specifically, this system has been implicated as playing an antihypertrophic role in the heart. Despite this, studies of VDR in the heart have been limited in number and scope. In the present study, we used a combination of real-time polymerase chain reaction, Western blot analysis, immunofluorescence, and transient transfection analysis to document the presence of functional VDR in both the myocytes and fibroblasts of the heart, as well as in the intact ventricular myocardium. We also demonstrated the presence of 1-alpha-hydroxylase and 24-hydroxylase in the heart, 2 enzymes involved in the synthesis and metabolism of 1,25 dihydroxyvitamin D. VDR is shown to interact directly with the human B-type natriuretic peptide gene promoter, a surrogate marker of the transcriptional response to hypertrophy. Of note, induction of myocyte hypertrophy either in vitro or in vivo leads to an increase in VDR mRNA and protein levels. Collectively, these findings suggest that the key components required for a functional 1,25 dihydroxyvitamin D-dependent signaling system are present in the heart and that this putatively antihypertrophic system is amplified in the setting of cardiac hypertrophy.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Myocytes, Cardiac/physiology , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Animals , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression/physiology , Humans , Luciferases/genetics , Myocytes, Cardiac/cytology , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Phosphatidylethanolamines , Rats , Rats, Sprague-Dawley , Rats, Wistar , Signal Transduction/physiology , Vitamin D/analogs & derivatives , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...