Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS EST Air ; 1(3): 200-222, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38482269

ABSTRACT

The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature inversions. A number of the research goals were motivated by questions raised by residents of Fairbanks, Alaska, where the study was held. This paper describes the measurement strategies and the conditions encountered during the January and February 2022 field experiment, and reports early examples of how the measurements addressed research goals, particularly those of interest to the residents. Outdoor air measurements showed high concentrations of particulate matter and pollutant gases including volatile organic carbon species. During pollution events, low winds and extremely stable atmospheric conditions trapped pollution below 73 m, an extremely shallow vertical scale. Tethered-balloon-based measurements intercepted plumes aloft, which were associated with power plant point sources through transport modeling. Because cold climate residents spend much of their time indoors, the study included an indoor air quality component, where measurements were made inside and outside a house to study infiltration and indoor sources. In the absence of indoor activities such as cooking and/or heating with a pellet stove, indoor particulate matter concentrations were lower than outdoors; however, cooking and pellet stove burns often caused higher indoor particulate matter concentrations than outdoors. The mass-normalized particulate matter oxidative potential, a health-relevant property measured here by the reactivity with dithiothreiol, of indoor particles varied by source, with cooking particles having less oxidative potential per mass than pellet stove particles.

2.
Environ Pollut ; 298: 118832, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35033620

ABSTRACT

Arctic warming leading to reduced summertime sea-ice is likely to lead to increased local shipping especially along the Northeast Passage near the northern coasts of Norway and Russia, which are shorter than the traditional southerly routes. Here, the regional chemistry-transport model WRF-Chem is used to examine the effects of shipping emissions on levels of air pollutants and deposition fluxes over the Barents Sea both for present-day and future conditions, based on a high growth scenario. Present-day shipping emissions are found to have already substantial effects on ozone concentrations, but limited effects on sulphate and nitrate aerosols. Predicted future changes in ozone are also important, particularly in regions with low nitrogen oxide concentrations, and results are sensitive to the way in which diversion shipping is distributed due to non-linear effects on photochemical ozone production. Whilst modest future increases in sulphate and nitrate aerosols are predicted, large enhancements in dry deposition of sulphur dioxide and wet deposition of nitrogen compounds to the Barents Sea are predicted. Such levels of future nitrogen deposition would represent a significant atmospheric source of oceanic nitrogen affecting sensitive marine ecosystems.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Air Pollutants/analysis , Ecosystem , Ships
3.
Ambio ; 46(Suppl 3): 453-463, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29076019

ABSTRACT

Local emissions of Arctic air pollutants and their impacts on climate, ecosystems and health are poorly understood. Future increases due to Arctic warming or economic drivers may put additional pressures on the fragile Arctic environment already affected by mid-latitude air pollution. Aircraft data were collected, for the first time, downwind of shipping and petroleum extraction facilities in the European Arctic. Data analysis reveals discrepancies compared to commonly used emission inventories, highlighting missing emissions (e.g. drilling rigs) and the intermittent nature of certain emissions (e.g. flaring, shipping). Present-day shipping/petroleum extraction emissions already appear to be impacting pollutant (ozone, aerosols) levels along the Norwegian coast and are estimated to cool and warm the Arctic climate, respectively. Future increases in shipping may lead to short-term (long-term) warming (cooling) due to reduced sulphur (CO2) emissions, and be detrimental to regional air quality (ozone). Further quantification of local Arctic emission impacts is needed.


Subject(s)
Air Pollutants , Climate , Ozone , Air Pollutants/analysis , Air Pollution , Arctic Regions , Ecosystem , Environmental Monitoring , Norway , Ozone/analysis , Ships
4.
Science ; 315(5818): 1537-40, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17363665

ABSTRACT

Notable warming trends have been observed in the Arctic. Although increased human-induced emissions of long-lived greenhouse gases are certainly the main driving factor, air pollutants, such as aerosols and ozone, are also important. Air pollutants are transported to the Arctic, primarily from Eurasia, leading to high concentrations in winter and spring (Arctic haze). Local ship emissions and summertime boreal forest fires may also be important pollution sources. Aerosols and ozone could be perturbing the radiative budget of the Arctic through processes specific to the region: Absorption of solar radiation by aerosols is enhanced by highly reflective snow and ice surfaces; deposition of light-absorbing aerosols on snow or ice can decrease surface albedo; and tropospheric ozone forcing may also be contributing to warming in this region. Future increases in pollutant emissions locally or in mid-latitudes could further accelerate global warming in the Arctic.

SELECTION OF CITATIONS
SEARCH DETAIL
...