Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Acoust Soc Am ; 154(5): 2858-2868, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37930178

ABSTRACT

Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis and other diseases. Backscatter measurements performed at peripheral skeletal sites such as the heel may place the interrogated region of bone tissue in the acoustic near field of the transducer. The purpose of this study is to investigate how measurements in the near field affect backscatter parameters used for ultrasonic bone assessment. Ultrasonic measurements were performed in a water tank using a planar 2.25 MHz transducer. Signals were acquired for five transducer-specimen distances: N/4, N/2, 3 N/4, N, and 5 N/4, where N is the near-field distance, a location that represents the transition from the near field to far field. Five backscatter parameters previously identified as potentially useful for ultrasonic bone assessment purposes were measured: apparent integrated backscatter, frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter, normalized mean of the backscatter difference, and backscatter amplitude decay constant. All five parameters depended on transducer-specimen distance to varying degrees with FSAB exhibiting the greatest dependence on distance. These results suggest that laboratory studies of bone should evaluate the performance of backscatter parameters using transducer-specimen distances that may be encountered clinically including distances where the ultrasonically interrogated region is in the near field of the transducer.


Subject(s)
Cancellous Bone , Ultrasonics , Ultrasonics/methods , Cancellous Bone/diagnostic imaging , Bone Density , Ultrasonography/methods , Scattering, Radiation , Transducers
2.
Ultrasound Med Biol ; 49(12): 2489-2496, 2023 12.
Article in English | MEDLINE | ID: mdl-37716831

ABSTRACT

OBJECTIVE: The ultrasonic properties of scalp may be relevant to a variety of applications including transcranial ultrasound. However, there is no information about the ultrasonic properties of scalp available in the literature. While ultrasonic studies of skin from other anatomic regions have been previously reported, scalp tissue is generally thicker with a higher density of hair follicles, blood vessels and sebaceous glands. Thus, it is unknown if the ultrasonic properties of scalp are similar to skin from other regions. The goal of this study was to measure the ultrasonic properties of human scalp. METHODS: Pulse-echo measurements were performed with a 7.5 MHz ultrasound transducer to determine the speed of sound (SOS), frequency slope of attenuation (FSA) and integrated backscatter coefficient (IBC) of 32 specimens of formalin-fixed human scalp from four donors. RESULTS: The means ± standard deviations for these three ultrasonic quantities measured in the frequency range 2.83-7.74 MHz over all specimens were SOS = 1525 ± 16.92 m/s, FSA = 2.59 ± 0.724 dB/cm/MHz and IBC = 0.122 ± 0.0746 cm-1 Sr-1. CONCLUSION: These values are comparable to reported values for human skin from other parts of the body, but some differences in SOS and IBC exist.


Subject(s)
Scalp , Ultrasonics , Humans , Ultrasonography , Sound , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL