Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell Chem Biol ; 30(6): 618-631.e12, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37290440

ABSTRACT

Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.


Subject(s)
Myeloproliferative Disorders , Humans , Mutation , Myeloproliferative Disorders/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
2.
J Clin Endocrinol Metab ; 108(8): 1968-1980, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-36740954

ABSTRACT

CONTEXT: Nicotinamide adenine dinucleotide (NAD) levels decline with aging and age-related decline in NAD has been postulated to contribute to age-related diseases. OBJECTIVE: We evaluated the safety and physiologic effects of NAD augmentation by administering its precursor, ß-nicotinamide mononucleotide (MIB-626, Metro International Biotech, Worcester, MA), in adults at risk for age-related conditions. METHODS: Thirty overweight or obese adults, ≥ 45 years, were randomized in a 2:1 ratio to 2 MIB-626 tablets each containing 500 mg of microcrystalline ß-nicotinamide mononucleotide or placebo twice daily for 28 days. Study outcomes included safety; NAD and its metabolome; body weight; liver, muscle, and intra-abdominal fat; insulin sensitivity; blood pressure; lipids; physical performance, and muscle bioenergetics. RESULTS: Adverse events were similar between groups. MIB-626 treatment substantially increased circulating concentrations of NAD and its metabolites. Body weight (difference -1.9 [-3.3, -0.5] kg, P = .008); diastolic blood pressure (difference -7.01 [-13.44, -0.59] mmHg, P = .034); total cholesterol (difference -26.89 [-44.34, -9.44] mg/dL, P = .004), low-density lipoprotein (LDL) cholesterol (-18.73 [-31.85, -5.60] mg/dL, P = .007), and nonhigh-density lipoprotein cholesterol decreased significantly more in the MIB-626 group than placebo. Changes in muscle strength, muscle fatigability, aerobic capacity, and stair-climbing power did not differ significantly between groups. Insulin sensitivity and hepatic and intra-abdominal fat did not change in either group. CONCLUSIONS: MIB-626 administration in overweight or obese, middle-aged and older adults safely increased circulating NAD levels, and significantly reduced total LDL and non-HDL cholesterol, body weight, and diastolic blood pressure. These data provide the rationale for larger trials to assess the efficacy of NAD augmentation in improving cardiometabolic outcomes in older adults.


Subject(s)
Insulin Resistance , Overweight , Middle Aged , Humans , Aged , NAD/metabolism , NAD/therapeutic use , Nicotinamide Mononucleotide/therapeutic use , Obesity , Body Weight , Cholesterol
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34172580

ABSTRACT

High-acuity αßT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αßTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αßTCRs and pre-TCRs within the αßT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αß. The chimeric γδ-αßTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2-/- thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αßT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αßT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.


Subject(s)
Mechanotransduction, Cellular , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Amino Acid Sequence , Animals , Gene Expression Profiling , Humans , Ligands , Mice , Protein Domains , Protein Stability , Protein Structure, Secondary , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Signal Transduction , Single Molecule Imaging , T-Lymphocytes/metabolism , Thymocytes/metabolism , Thymus Gland/metabolism , Transcriptome/genetics
4.
iScience ; 24(6): 102414, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34041454

ABSTRACT

Sex-hormone-binding globulin (SHBG) regulates the transport and bioavailability of estradiol. The dynamics of estradiol's binding to SHBG are incompletely understood, although it is believed that estradiol binds to each monomer of SHBG dimer with identical affinity (Kd ∼2 nM). Contrary to the prevalent view, we show that estradiol's binding to SHBG is nonlinear, and the "apparent" Kd changes with varying estradiol and SHBG concentrations. Estradiol's binding to each SHBG monomer influences residues in the ligand-binding pocket of both monomers and differentially alters the conformational and energy landscapes of both monomers. Monomers are not energetically or conformationally equivalent even in fully bound state. Estradiol's binding to SHBG involves bidirectional, inter-monomeric allostery that changes the distribution of both monomers among various energy and conformational states. Inter-monomeric allostery offers a mechanism to extend the binding range of SHBG and regulate hormone bioavailability as estradiol concentrations vary widely during life.

5.
Endocr Connect ; 10(2): 220-229, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33544092

ABSTRACT

OBJECTIVE: Calculating the free testosterone level has gained increasing interest and different indirect algorithms have been suggested. The objective was to compare free androgen index (FAI), free testosterone estimated using the linear binding model (Vermeulen: cFTV) and the binding framework accounting for allosterically coupled SHBG monomers (Zakharov: cFTZ) in relation to cardiometabolic conditions. DESIGN: A prospective cohort study including 5350 men, aged 30-70 years, participating in population-based surveys (MONICA I-III and Inter99) from 1982 to 2001 and followed until December 2012 with baseline and follow-up information on cardiometabolic parameters and vital status. RESULTS: Using age-standardized hormone levels, FAI was higher among men with baseline cardiometabolic conditions, whereas cFTV and cFTZ levels were lower compared to men without these conditions as also seen for total testosterone. Men in highest quartiles of cFTV or cFTZ had lower risk of developing type 2 diabetes (cFTV: HR = 0.74 (0.49-1.10), cFTZ: HR = 0.59 (0.39-0.91)) than men in lowest quartile. In contrast, men with highest levels of FAI had a 74% (1.17-2.59) increased risk of developing type 2 diabetes compared to men in lowest quartile. CONCLUSION: The association of estimated free testosterone and the studied outcomes differ depending on algorithm used. cFTV and cFTZ showed similar associations to baseline and long-term cardiometabolic parameters. In contrast, an empiric ratio, FAI, showed opposite associations to several of the examined parameters and may reflect limited clinical utility.

6.
Endocrinology ; 162(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33125473

ABSTRACT

Human serum albumin (HSA) acts as a carrier for testosterone, other sex hormones, fatty acids, and drugs. However, the dynamics of testosterone's binding to HSA and the structure of its binding sites remain incompletely understood. Here, we characterize the dynamics of testosterone's binding to HSA and the stoichiometry and structural location of the binding sites using 2-dimensional nuclear magnetic resonance (2D NMR), fluorescence spectroscopy, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid dipotassium salt partitioning, and equilibrium dialysis, complemented by molecular modeling. 2D NMR studies showed that testosterone competitively displaced 18-[13C]-oleic acid from at least 3 known fatty acid binding sites on HSA that also bind many drugs. Binding isotherms of testosterone's binding to HSA generated using fluorescence spectroscopy and equilibrium dialysis were nonlinear and the apparent dissociation constant varied with different concentrations of testosterone and HSA. The binding isotherms neither conformed to a linear binding model with 1:1 stoichiometry nor to 2 independent binding sites; the binding isotherms were most consistent with 2 or more allosterically coupled binding sites. Molecular dynamics studies revealed that testosterone's binding to fatty acid binding site 3 on HSA was associated with conformational changes at site 6, indicating that residues in in these 2 distinct binding sites are allosterically coupled. There are multiple, allosterically coupled binding sites for testosterone on HSA. Testosterone shares these binding sites on HSA with free fatty acids, which could displace testosterone from HSA under various physiological states or disease conditions, affecting its bioavailability.


Subject(s)
Serum Albumin, Human/metabolism , Testosterone/metabolism , Carbon Isotopes , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Spectrometry, Fluorescence
7.
Mol Metab ; 42: 101082, 2020 12.
Article in English | MEDLINE | ID: mdl-32992039

ABSTRACT

OBJECTIVE: The human adaptive fasting response enables survival during periods of caloric deprivation. A crucial component of the fasting response is the shift from glucose metabolism to utilization of lipids, underscoring the importance of adipose tissue as the central lipid-storing organ. The objective of this study was to investigate the response of adipose tissue to a prolonged fast in humans. METHODS: We performed RNA sequencing of subcutaneous adipose tissue samples longitudinally collected during a 10-day, 0-calorie fast in humans. We further investigated observed transcriptional signatures utilizing cultured human monocytes and Thp1 cells. We examined the cellularity of adipose tissue biopsies with transmission electron microscopy and tested for associated changes in relevant inflammatory mediators in the systemic circulation by ELISA assays of longitudinally collected blood samples. RESULTS: Coincident with the expected shift away from glucose utilization and lipid storage, we demonstrated downregulation of pathways related to glycolysis, oxidative phosphorylation, and lipogenesis. The canonical lipolysis pathway was also downregulated, whereas fasting drove alternative lysosomal paths to lipid digestion. Unexpectedly, the dominant induced pathways were associated with immunity and inflammation, although this only became evident at the 10-day time point. Among the most augmented transcripts were those associated with macrophage identity and function, such as members of the erythroblast transformation-specific (ETS) transcription factor family. Key components of the macrophage transcriptional signal in fasting adipose tissue were recapitulated with induced expression of two of the ETS transcription factors via cultured macrophages, SPIC and SPI1. The inflammatory signal was further reflected by an increase in systemic inflammatory mediators. CONCLUSIONS: Collectively, this study demonstrates an unexpected role of metabolic inflammation in the human adaptive fasting response.


Subject(s)
Adipose Tissue/metabolism , Fasting/metabolism , Inflammation/metabolism , Adipose Tissue/immunology , Adult , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Fasting/physiology , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Inflammation/immunology , Insulin/metabolism , Insulin Resistance , Lipid Metabolism/physiology , Lipogenesis , Lipolysis/physiology , Macrophages , Male , Obesity/metabolism , Subcutaneous Fat/metabolism , Transcription Factors/metabolism
8.
Sci Rep ; 10(1): 4409, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32157112

ABSTRACT

There is a lack of well validated prognostic biomarkers in osteosarcoma, a rare, recalcitrant disease for which treatment standards have not changed in over 20 years. We performed microRNA sequencing in 74 frozen osteosarcoma biopsy samples, constituting the largest single center translationally analyzed osteosarcoma cohort to date, and we separately analyzed a multi-omic dataset from a large NCI supported national cooperative group cohort. We validated the prognostic value of candidate microRNA signatures and contextualized them in relevant transcriptomic and epigenomic networks. Our results reveal the existence of molecularly defined phenotypes associated with outcome independent of clinicopathologic features. Through machine learning based integrative pharmacogenomic analysis, the microRNA biomarkers identify novel therapeutics for stratified application in osteosarcoma. The previously unrecognized osteosarcoma subtypes with distinct clinical courses and response to therapy could be translatable for discerning patients appropriate for more intensified, less intensified, or alternate therapeutic regimens.


Subject(s)
Bone Neoplasms/pathology , Gene Regulatory Networks , MicroRNAs/genetics , Osteosarcoma/pathology , Sequence Analysis, RNA/methods , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Biopsy , Bone Neoplasms/genetics , Child , Child, Preschool , Cohort Studies , Female , Humans , Machine Learning , Male , Middle Aged , Osteosarcoma/genetics , Phenotype , Prognosis , RNA, Messenger/genetics , Survival Analysis , Young Adult
9.
Proc Natl Acad Sci U S A ; 116(2): 631-640, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30578319

ABSTRACT

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V7.


Subject(s)
Lipogenesis , Neoplasm Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Humans , Male , Mice , Neoplasm Metastasis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Xenograft Model Antitumor Assays
10.
Blood Adv ; 1(25): 2361-2374, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29296886

ABSTRACT

Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.

11.
JCI Insight ; 1(13)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27617304

ABSTRACT

Regulation of lineage-restricted transcription factors has been shown to influence malignant transformation in several types of cancer. Whether similar mechanisms are involved in ovarian cancer pathogenesis is unknown. PAX8 is a nuclear transcription factor that controls the embryologic development of the Müllerian system, including the fallopian tubes. Recent studies have shown that fallopian tube secretory epithelial cells (FTSECs) give rise to the most common form of ovarian cancer, high-grade serous ovarian carcinomas (HGSOCs). We designed the present study in order to understand whether changes in gene expression between FTSECs and HGSOCs relate to alterations in PAX8 binding to chromatin. Using whole transcriptome shotgun sequencing (RNA-Seq) after PAX8 knockdown and ChIP-Seq, we show that FTSECs and HGSOCs are distinguished by marked reprogramming of the PAX8 cistrome. Genes that are significantly altered between FTSECs and HGSOCs are enriched near PAX8 binding sites. These sites are also near TEAD binding sites, and these transcriptional changes may be related to PAX8 interactions with the TEAD/YAP1 signaling pathway. These data suggest that transcriptional changes after transformation in ovarian cancer are closely related to epigenetic remodeling in lineage-specific transcription factors.

12.
Genomics ; 108(2): 64-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27432546

ABSTRACT

Mammalian genomes encode a large number of non-coding RNAs (ncRNAs) that greatly exceed mRNA genes. While the physiological and pathological roles of ncRNAs have been increasingly understood, the mechanisms of regulation of ncRNA expression are less clear. Here, our genomic study has shown that a significant number of long non-coding RNAs (lncRNAs, >1000 nucleotides) harbor RNA polymerase II (Pol II) engaged with the transcriptional start site. A pausing and transcriptional elongation factor for protein-coding genes, tripartite motif-containing 28 (TRIM28) regulates the transcription of a subset of lncRNAs in mammalian cells. In addition, the majority of lncRNAs in human and murine cells regulated by Pol II promoter-proximal pausing appear to function in stimulus-inducible biological pathways. Our findings suggest an important role of Pol II pausing for the transcription of mammalian lncRNA genes.


Subject(s)
Nuclear Proteins/metabolism , RNA Polymerase II/genetics , RNA, Long Noncoding/genetics , Repressor Proteins/metabolism , Transcription, Genetic , Animals , Cells, Cultured , Gene Expression Regulation , Genomics/methods , HEK293 Cells , Humans , Mammals/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Tripartite Motif-Containing Protein 28
13.
Nat Commun ; 6: 10191, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26671524

ABSTRACT

We have previously shown that RNA polymerase II (Pol II) pause release and transcriptional elongation involve phosphorylation of the factor TRIM28 by the DNA damage response (DDR) kinases ATM and DNA-PK. Here we report a significant role for DNA breaks and DDR signalling in the mechanisms of transcriptional elongation in stimulus-inducible genes in humans. Our data show the enrichment of TRIM28 and γH2AX on serum-induced genes and the important function of DNA-PK for Pol II pause release and transcriptional activation-coupled DDR signalling on these genes. γH2AX accumulation decreases when P-TEFb is inhibited, confirming that DDR signalling results from transcriptional elongation. In addition, transcriptional elongation-coupled DDR signalling involves topoisomerase II because inhibiting this enzyme interferes with Pol II pause release and γH2AX accumulation. Our findings propose that DDR signalling is required for effective Pol II pause release and transcriptional elongation through a novel mechanism involving TRIM28, DNA-PK and topoisomerase II.


Subject(s)
DNA Breaks , DNA Topoisomerases, Type II/metabolism , DNA-Activated Protein Kinase/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Repressor Proteins/metabolism , Transcription Elongation, Genetic , Chromatin Immunoprecipitation , Comet Assay , DNA Damage/genetics , Fluorescent Antibody Technique , HEK293 Cells , Humans , Microscopy, Confocal , Phosphorylation , Positive Transcriptional Elongation Factor B/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcription, Genetic/genetics , Tripartite Motif-Containing Protein 28
SELECTION OF CITATIONS
SEARCH DETAIL
...