Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37648285

ABSTRACT

Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Adenocarcinoma/etiology , Pancreatic Neoplasms/etiology , Obesity/complications , Carcinogenesis , Cell Transformation, Neoplastic
2.
Nat Commun ; 12(1): 3696, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140472

ABSTRACT

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.


Subject(s)
Bacterial Infections/immunology , Bacterial Infections/metabolism , Extracellular Vesicles/metabolism , Skin/parasitology , Ticks/metabolism , Ticks/microbiology , Anaplasma phagocytophilum/pathogenicity , Animals , Arthropods/metabolism , Arthropods/microbiology , Arthropods/physiology , Cell Line , Dermacentor/metabolism , Dermacentor/microbiology , Dermacentor/physiology , Extracellular Vesicles/ultrastructure , Francisella tularensis/pathogenicity , Gene Ontology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/parasitology , Intravital Microscopy , Ixodes/metabolism , Ixodes/microbiology , Ixodes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Proteomics , R-SNARE Proteins/metabolism , Skin/immunology , Skin/microbiology , T-Lymphocytes/metabolism , Tandem Mass Spectrometry , Vesicle-Associated Membrane Protein 2/metabolism
3.
Cell ; 181(4): 832-847.e18, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32304665

ABSTRACT

Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Molecular analyses of human and murine samples define microenvironmental consequences of obesity that foster tumorigenesis rather than new driver gene mutations, including significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant beta cell expression of the peptide hormone cholecystokinin (Cck) in response to obesity and show that islet Cck promotes oncogenic Kras-driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment and implicate endocrine-exocrine signaling beyond insulin in PDAC development.


Subject(s)
Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/metabolism , Obesity/metabolism , Animals , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Disease Progression , Endocrine Cells/metabolism , Exocrine Glands/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Obesity/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Signal Transduction/genetics , Tumor Microenvironment/physiology , Pancreatic Neoplasms
4.
Life Sci Alliance ; 2(3)2019 06.
Article in English | MEDLINE | ID: mdl-31196872

ABSTRACT

The apicomplexan parasite Babesia microti is the primary agent of human babesiosis, a malaria-like illness and potentially fatal tick-borne disease. Unlike its close relatives, the agents of human malaria, B. microti develops within human and mouse red blood cells in the absence of a parasitophorous vacuole, and its secreted antigens lack trafficking motifs found in malarial secreted antigens. Here, we show that after invasion of erythrocytes, B. microti undergoes a major morphogenic change during which it produces an interlacement of vesicles (IOV); the IOV system extends from the plasma membrane of the parasite into the cytoplasm of the host erythrocyte. We developed antibodies against two immunodominant antigens of the parasite and used them in cell fractionation studies and fluorescence and immunoelectron microscopy analyses to monitor the mode of secretion of B. microti antigens. These analyses demonstrate that the IOV system serves as a major export mechanism for important antigens of B. microti and represents a novel mechanism for delivery of parasite effectors into the host by this apicomplexan parasite.


Subject(s)
Antigens, Protozoan/immunology , Babesia microti/immunology , Babesia microti/metabolism , Babesiosis/parasitology , Transport Vesicles/metabolism , Animals , Biological Transport , Disease Models, Animal , Erythrocytes/parasitology , Erythrocytes/ultrastructure , Humans , Immunodominant Epitopes/immunology , Mice , Mice, Knockout
5.
Proc Natl Acad Sci U S A ; 116(8): 3183-3192, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723152

ABSTRACT

The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.


Subject(s)
Genome, Protozoan/genetics , Heterochromatin/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Animals , Centromere/genetics , Gene Expression Regulation/genetics , Genomics , Humans , Malaria, Falciparum/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Plasmodium knowlesi/genetics , Plasmodium knowlesi/pathogenicity , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Telomere/genetics , Toxoplasma/genetics , Toxoplasma/pathogenicity
6.
Int J Parasitol ; 49(2): 105-113, 2019 02.
Article in English | MEDLINE | ID: mdl-30176236

ABSTRACT

Babesia microti and Babesia duncani are the main causative agents of human babesiosis in the United States. While significant knowledge about B. microti has been gained over the past few years, nothing is known about B. duncani biology, pathogenesis, mode of transmission or sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and hamsters have shown that unlike B. microti, infection with B. duncani results in severe pathology and ultimately death. The parasite factors involved in B. duncani virulence remain unknown. Here we report the first known completed sequence and annotation of the apicoplast and mitochondrial genomes of B. duncani. We found that the apicoplast genome of this parasite consists of a 34 kb monocistronic circular molecule encoding functions that are important for apicoplast gene transcription as well as translation and maturation of the organelle's proteins. The mitochondrial genome of B. duncani consists of a 5.9 kb monocistronic linear molecule with two inverted repeats of 48 bp at both ends. Using the conserved cytochrome b (Cytb) and cytochrome c oxidase subunit I (coxI) proteins encoded by the mitochondrial genome, phylogenetic analysis revealed that B. duncani defines a new lineage among apicomplexan parasites distinct from B. microti, Babesia bovis, Theileria spp. and Plasmodium spp. Annotation of the apicoplast and mitochondrial genomes of B. duncani identified targets for development of effective therapies. Our studies set the stage for evaluation of the efficacy of these drugs alone or in combination against B. duncani in culture as well as in animal models.


Subject(s)
Babesia/drug effects , Babesia/genetics , Drug Resistance , Evolution, Molecular , Genome, Mitochondrial , Genome, Protozoan , Animals , Humans , Molecular Sequence Annotation , United States , Whole Genome Sequencing
7.
J Biol Chem ; 293(52): 19974-19981, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30463941

ABSTRACT

Human babesiosis is an emerging tick-borne disease caused by apicomplexan parasites of the genus Babesia Clinical cases caused by Babesia duncani have been associated with high parasite burden, severe pathology, and death. In both mice and hamsters, the parasite causes uncontrolled fulminant infections, which ultimately lead to death. Resolving these infections requires knowledge of B. duncani biology, virulence, and susceptibility to anti-infectives, but little is known and further research is hindered by a lack of relevant model systems. Here, we report the first continuous in vitro culture of B. duncani in human red blood cells. We show that during its asexual cycle within human erythrocytes, B. duncani develops and divides to form four daughter parasites with parasitemia doubling every ∼22 h. Using this in vitro culture assay, we found that B. duncani has low susceptibility to the four drugs recommended for treatment of human babesiosis, atovaquone, azithromycin, clindamycin, and quinine, with IC50 values ranging between 500 nm and 20 µm These data suggest that current practices are of limited effect in treating the disease. We anticipate this new disease model will set the stage for a better understanding of the biology of this parasite and will help guide better therapeutic strategies to treat B. duncani-associated babesiosis.


Subject(s)
Antiparasitic Agents/pharmacology , Babesia/drug effects , Babesiosis/drug therapy , Babesiosis/parasitology , Erythrocytes/parasitology , Parasitic Sensitivity Tests/methods , Atovaquone/pharmacology , Azithromycin/pharmacology , Babesia/growth & development , Cell Culture Techniques/methods , Clindamycin/pharmacology , Humans , Quinine/pharmacology
8.
J Clin Microbiol ; 56(10)2018 10.
Article in English | MEDLINE | ID: mdl-30093394

ABSTRACT

Human babesiosis is an emerging zoonotic infectious disease caused by intraerythrocytic protozoan parasites of the genus Babesia Most cases of human babesiosis are caused by Babesia microti and often manifest in individuals over the age of 50 years or in patients with a compromised immune system. Patients who develop symptomatic B. microti infections usually experience months of asymptomatic infection after the acute infection has resolved. About one-fifth of B. microti-infected adults never develop symptoms. These asymptomatically infected individuals sometimes donate blood and thus can transmit B. microti through blood transfusion. Current assays for detection of active B. microti infections can be used to screen donor blood prior to transfusion, but they rely primarily on microscopy or PCR methods, which have sensitivity and technical limitations. Here we report the development of an antigen capture enzyme-linked immunosorbent assay (BmGPAC) based on a major secreted immunodominant antigen of B. microti (BmGPI12/BmSA1), and we provide evidence that this assay is superior for detection of active B. microti infections, compared to available microscopy methods and serological assays. The assay has been evaluated using supernatants of B. microti-infected erythrocytes cultured in vitro, sera from B. microti-infected laboratory mice, and sera from wild mice and human patients. Our data suggest that the BmGPAC assay is a reliable assay for detection of active B. microti infections and is superior to real-time PCR and antibody assays for diagnosis of acute B. microti infections, screening of the blood supply, and epidemiological surveys of humans and animal reservoir hosts.


Subject(s)
Antigens, Protozoan/blood , Babesiosis/diagnosis , Enzyme-Linked Immunosorbent Assay , Parasitology/methods , Serologic Tests/standards , Animals , Antigens, Protozoan/metabolism , Babesia microti/physiology , Babesiosis/blood , Cells, Cultured , Erythrocytes/parasitology , Female , Humans , Male , Mice
9.
Sci Rep ; 7(1): 14234, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079738

ABSTRACT

The biosynthesis of the major acyl carrier Coenzyme A from pantothenic acid (PA) is critical for survival of Plasmodium falciparum within human erythrocytes. Accordingly, a PA analog α-PanAm showed potent activity against blood stage parasites in vitro; however, its efficacy in vivo and its mode of action remain unknown. We developed a new synthesis route for α-PanAm and showed that the compound is highly effective against blood stages of drug-sensitive and -resistant P. falciparum strains, inhibits development of P. berghei in hepatocytes, and at doses up to 100 mg/kg also inhibits blood stage development of P. chabaudi in mice. We used yeast and its pantothenate kinase Cab1 as models to characterize mode of action of α-PanAm and found that α-PanAm inhibits yeast growth in a PA-dependent manner, and its potency increases dramatically in a yeast mutant with defective pantothenate kinase activity. Biochemical analyses using 14C-PA as a substrate demonstrated that α-PanAm is a competitive inhibitor of Cab1. Interestingly, biochemical and mass spectrometry analyses also showed that the compound is phosphorylated by Cab1. Together, these data suggest that α-PanAm exerts its antimicrobial activity by direct competition with the natural substrate PA for phosphorylation by the pantothenate kinase.


Subject(s)
Antimalarials/pharmacology , Pantothenic Acid/analogs & derivatives , Pantothenic Acid/metabolism , Animals , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Inhibitory Concentration 50 , Mice , Pantothenic Acid/pharmacology , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Plasmodium/drug effects , Plasmodium/metabolism , Plasmodium/physiology
10.
Sci Rep ; 6: 35284, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752055

ABSTRACT

Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution.


Subject(s)
Babesia microti/pathogenicity , Babesiosis/genetics , Polymorphism, Genetic , Proteomics , Animals , Babesia microti/genetics , Babesiosis/parasitology , Babesiosis/transmission , Gene Expression Regulation , Genome, Protozoan , Genomics , Host-Parasite Interactions/genetics , Humans , Ixodes/genetics , Ixodes/parasitology , Microarray Analysis , New England
11.
J Exp Med ; 213(7): 1307-18, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27270894

ABSTRACT

Human babesiosis is a tick-borne multisystem disease caused by Babesia species of the apicomplexan phylum. Most clinical cases and fatalities of babesiosis are caused by Babesia microti Current treatment for human babesiosis consists of two drug combinations, atovaquone + azithromycin or quinine + clindamycin. These treatments are associated with adverse side effects and a significant rate of drug failure. Here, we provide evidence for radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone (ELQ) prodrug and atovaquone. In vivo efficacy studies in mice using ELQ-271, ELQ-316, and the ELQ-316 prodrug, ELQ-334, demonstrated excellent growth inhibitory activity against the parasite, with potency equal to that of orally administered atovaquone at 10 mg/kg. Analysis of recrudescent parasites after ELQ or atovaquone monotherapy identified genetic substitutions in the Qi or Qo sites, respectively, of the cytochrome bc1 complex. Impressively, a combination of ELQ-334 and atovaquone, at doses as low as 5.0 mg/kg each, resulted in complete clearance of the parasite with no recrudescence up to 122 d after discontinuation of therapy. These results will set the stage for future clinical evaluation of ELQ and atovaquone combination therapy for treatment of human babesiosis.


Subject(s)
Atovaquone/pharmacology , Babesia microti/immunology , Babesiosis/drug therapy , Immunologic Deficiency Syndromes/parasitology , Prodrugs/pharmacology , Quinolones/pharmacology , Animals , Babesiosis/genetics , Babesiosis/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Mice , Mice, SCID
12.
Transfusion ; 56(8): 2085-99, 2016 08.
Article in English | MEDLINE | ID: mdl-27184823

ABSTRACT

BACKGROUND: Babesia microti is a protozoan parasite responsible for the majority of reported cases of human babesiosis and a major risk to the blood supply. Laboratory screening of blood donors may help prevent transfusion-transmitted babesiosis but there is no Food and Drug Administration-approved screening method yet available. Development of a sensitive, specific, and highly automated B. microti antibody assay for diagnosis of acute babesiosis and blood screening could have an important impact on decreasing the health burden of B. microti infection. STUDY DESIGN AND METHODS: Herein, we take advantage of recent advances in B. microti genomic analyses, field surveys of the reservoir host, and human studies in endemic areas to apply a targeted immunomic approach to the discovery of B. microti antigens that serve as signatures of active or past babesiosis infections. Of 19 glycosylphosphatidylinositol (GPI)-anchored protein candidates (BmGPI1-19) identified in the B. microti proteome, 17 were successfully expressed, printed on a microarray chip, and used to screen sera from uninfected and B. microti-infected mice and humans to determine immune responses that are associated with active and past infection. RESULTS: Antibody responses to various B. microti BmGPI antigens were detected and BmGPI12 was identified as the best biomarker of infection that provided high sensitivity and specificity when used in a microarray antibody assay. CONCLUSION: BmGPI12 alone or in combination with other BmGPI proteins is a promising candidate biomarker for detection of B. microti antibodies that might be useful in blood screening to prevent transfusion-transmitted babesiosis.


Subject(s)
Antigens, Protozoan/immunology , Babesia microti/immunology , Babesiosis/immunology , Biomarkers/analysis , Animals , Genome, Protozoan/genetics , Humans , Kinetics , Mice , Protein Array Analysis
13.
Mol Microbiol ; 99(6): 999-1014, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26585333

ABSTRACT

Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity.


Subject(s)
Antimalarials/pharmacology , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/metabolism , Enzyme Inhibitors/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/enzymology , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxy-Lyases/genetics , Cloning, Molecular , Female , Malaria, Falciparum/microbiology , Mice , Parasitic Sensitivity Tests , Phosphatidylserines/metabolism , Plasmodium falciparum/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
14.
Sci Rep ; 4: 5665, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25012929

ABSTRACT

In nearly all non-photosynthetic cells, pantothenate (vitamin B5) transport and utilization are prerequisites for the synthesis of the universal essential cofactor Coenzyme A (CoA). Early studies showed that human malaria parasites rely on the uptake of pantothenate across the parasite plasma membrane for survival within erythrocytes. Recently, a P. falciparum candidate pantothenate transporter (PAT) was characterized by functional complementation in yeast. These studies revealed that PfPAT mediated survival of yeast cells in low pantothenate concentrations and restored sensitivity of yeast cells lacking pantothenate uptake to fenpropimorph. In addition, PfPAT was refractory to deletion in P. falciparum in vitro, but nothing is known about the in vivo functions of PAT in Plasmodium life cycle stages. Herein, we used gene-targeting techniques to delete PAT in Plasmodium yoelii. Parasites lacking PAT displayed normal asexual and sexual blood stage development compared to wild-type (WT) and WT-like p230p(-) parasites. However, progression from the ookinete to the oocyst stage and sporozoite formation were completely abolished in pat(-) parasites. These studies provide the first evidence for an essential role of a candidate pantothenate transport in malaria transmission to Anopheles mosquitoes. This will set the stage for the development of PAT inhibitors against multiple parasite life cycle stages.


Subject(s)
Culicidae/parasitology , Malaria/transmission , Pantothenic Acid/metabolism , Parasites/metabolism , Plasmodium yoelii/metabolism , Symporters/metabolism , Animals , Anopheles/parasitology , Life Cycle Stages/physiology , Malaria/parasitology , Oocysts/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...