Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 942: 173762, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38852875

ABSTRACT

The use of recirculating aquaculture systems (RAS) for Atlantic salmon (Salmo salar) production has become increasingly common. RAS water disinfection plays a crucial role on its biosecurity. Peracetic acid (PAA) is a promising disinfectant due to its powerful oxidative properties, broad antimicrobial spectrum, and rapid degradation into no harmful compounds. This study focused on assessing the consequences of prolonged application of a PAA-based disinfectant in a RAS stocked with salmon parr. The experiment included three treatment groups in triplicate: 0 mg/L PAA (control), 0.1 mg/L PAA, and 1 mg/L PAA, using nine-replicated RAS with a total of 360 fish (14.8 ± 2.3 g; N = 40/RAS). The study spanned 28 days, with samples collected on days 0, 14, and 28. The analyzed parameters were water quality, and fish parameters, including external welfare indicators, gill histology, total antioxidant capacity (TAC), reactive oxygen species/reactive nitrogen species (ROC/RNC), oxidative stress biomarkers related to DNA and protein, cellular DNA damage, and global gene expression. While water quality remained relatively stable, there was an increase in bacterial populations in the groups exposed to PAA, particularly 1 mg/L PAA. Fish weight did not differ between the control and PAA-exposed groups. TAC, ROC/RNC, and oxidative stress biomarkers exhibited similar trends. The study identified >400 differentially expressed genes (DEGs) in the skin, gill, and olfactory organ, with many of these DEGs associated with immune responses. Comparing the transcriptomic profiles of the three tissue organs revealed that the olfactory organ was the most reactive to PAA treatment. This study shows that calculated PAA concentrations of 0.1 mg/L and 1 mg/L in the pump-sump, contributed to an increase of bacteria whereas no detectable differences in health and welfare of salmon parr were found. These findings are promising for the implementation of PAA-based disinfectants in RAS stoked with Atlantic salmon parr.


Subject(s)
Aquaculture , Disinfectants , Peracetic Acid , Salmo salar , Animals , Peracetic Acid/pharmacology , Aquaculture/methods , Oxidative Stress , Disinfection/methods , Water Quality
2.
J Fish Biol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38423545

ABSTRACT

The principles of three Rs-REPLACEMENT, REDUCTION, and REFINEMENT-govern the protection and use of animals, including fish, for research purposes in the European Union and Norway. In this paper, we discuss some straightforward steps to simplify the delivery of these principles at the idea stage and adapt some of these examples for conducting fish trials related to health and welfare. Although some of the approaches are well established in other animal science arenas, we believe there can be a timely recap of their key facets. We discuss a number of simple strategies to emphasize how a reduction in fish numbers can be achieved from initial project conception to implementation, highlighting not only their advantages but also their limitations. We also highlight the role that funding agencies can play in the implementation of the 3R principles in aquaculture research. These simple points can be used in frameworks to initiate a broader and dynamic intersectoral dialogue among stakeholders of aquaculture research on how to promote ethics and embrace opportunities for this within the tenets of the 3Rs.

3.
Ecotoxicol Environ Saf ; 270: 115897, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38176182

ABSTRACT

Atlantic salmon (Salmo salar) might encounter toxic hydrogen sulphide (H2S) gas during aquaculture production. Exposure to this gas can be acute or chronic, with heightened levels often linked to significant mortality rates. Despite its recognised toxicity, our understanding of the physiological implications of H2S on salmon remains limited. This report details the mucosal and systemic physiological consequences in post-smolt salmon reared in brackish water at 12 ppt after prolonged exposure to elevated H2S levels over 4 weeks. The fish were subjected to two concentrations of H2S: 1 µg/L (low group) and 5 µg/L (high group). An unexposed group at 0 µg/L served as the control. Both groups exposed to H2S exhibited incremental mortality, with cumulative mortality rates of 4.7 % and 16 % for the low and high groups, respectively. Production performance, including weight and condition factors, were reduced in the H2S-exposed groups, particularly in the high group. Mucosal response of the olfactory organ revealed higher tissue damage scores in the H2S-exposed groups, albeit only at week 4. The high group displayed pronounced features such as increased mucus cell density and oedema-like vacuoles. Transcriptome analysis of the olfactory organ unveiled that the effects of H2S were more prominent at week 4, with the high group experiencing a greater magnitude of change than the low group. Genes associated with the extracellular matrix were predominantly downregulated, while the upregulated genes primarily pertained to immune response. H2S-induced alterations in the metabolome were more substantial in plasma than skin mucus. Furthermore, the number of differentially affected circulating metabolites was higher in the low group compared to the high group. Five core pathways were significantly impacted by H2S regardless of concentration, including the phenylalanine, tyrosine, and tryptophan biosynthesis. The plasma levels of phenylalanine and tyrosine were reduced following exposure to H2S. While there was a discernible distinction in the skin mucus metabolomes among the three treatment groups, only one metabolite - 4-hydroxyproline - was significantly impacted by H2S. Furthermore, this metabolite was significantly reduced in the plasma and skin mucus of H2S-exposed fish. This study underscores that prolonged exposure to H2S, even at concentrations previously deemed sub-lethal, has discernible physiological implications that manifest across various organisational levels. Given these findings, prolonged exposure to H2S poses a welfare risk, and thus, its presence must be maintained at low levels (<1 µg/L) in salmon land-based rearing systems.


Subject(s)
Hydrogen Sulfide , Salmo salar , Animals , Aquaculture , Phenylalanine , Tyrosine
4.
Genomics ; 115(6): 110735, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898334

ABSTRACT

We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.


Subject(s)
Francisella , Gadus morhua , Animals , Gadus morhua/genetics , Temperature , Francisella/genetics
5.
G3 (Bethesda) ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37724757

ABSTRACT

In this study, we present the first spatial transcriptomic atlas of Atlantic salmon skin using the Visium Spatial Gene Expression protocol. We utilized frozen skin tissue from 4 distinct sites, namely the operculum, pectoral and caudal fins, and scaly skin at the flank of the fish close to the lateral line, obtained from 2 Atlantic salmon (150 g). High-quality frozen tissue sections were obtained by embedding tissue in optimal cutting temperature media prior to freezing and sectioning. Further, we generated libraries and spatial transcriptomic maps, achieving a minimum of 80 million reads per sample with mapping efficiencies ranging from 79.3 to 89.4%. Our analysis revealed the detection of over 80,000 transcripts and nearly 30,000 genes in each sample. Among the tissue types observed in the skin, the epithelial tissues exhibited the highest number of transcripts (unique molecular identifier counts), followed by muscle tissue, loose and fibrous connective tissue, and bone. Notably, the widest nodes in the transcriptome network were shared among the epithelial clusters, while dermal tissues showed less consistency, which is likely attributable to the presence of multiple cell types at different body locations. Additionally, we identified collagen type 1 as the most prominent gene family in the skin, while keratins were found to be abundant in the epithelial tissue. Furthermore, we successfully identified gene markers specific to epithelial tissue, bone, and mesenchyme. To validate their expression patterns, we conducted a meta-analysis of the microarray database, which confirmed high expression levels of these markers in mucosal organs, skin, gills, and the olfactory rosette.


Subject(s)
Fish Diseases , Salmo salar , Animals , Transcriptome , Salmo salar/genetics , Gene Expression Profiling , Skin/metabolism , Epithelium , Fish Diseases/genetics
6.
Genomics ; 115(3): 110632, 2023 05.
Article in English | MEDLINE | ID: mdl-37127252

ABSTRACT

The molecular repertoire of the mucosa-associated lymphoid tissue (MALT) in the olfactory rosette in most teleost fish is unknown. Here we present the basal transcriptome of the olfactory rosette of Atlantic salmon (Salmo salar). To investigate its mucosal immune features, we performed a comparative transcriptomic analysis with the gills, one of the most studied organs possessing MALT. Pathway enrichment revealed that cytokine-cytokine interaction and the neuroactive ligand-receptor interaction pathways were at the core of the shared similarity between the two organs. The immunological features of the two organs were further characterised by the overrepresentation of several immune-related pathways, particularly important for pathogen recognition. The immunological differences between the two organs were underlined with the differential regulation of markers for interleukins, extracellular matrix, antimicrobial peptides, and complement. The basal transcriptome of Atlantic salmon olfactory rosette is a valuable molecular toolbox that will advance our understanding of nasal immunity in teleost fish.


Subject(s)
Salmo salar , Transcriptome , Animals , Gills , Gene Expression Profiling , Cytokines
7.
Aquat Toxicol ; 260: 106574, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244121

ABSTRACT

Hydrogen sulphide (H2S) is a naturally occurring compound generated either endogenously or exogenously and serves both as a gaseous signalling molecule and an environmental toxicant. Though it has been extensively investigated in mammalian systems, the biological function of H2S in teleost fish is poorly identified. Here we demonstrate how exogenous H2S regulates cellular and molecular processes in Atlantic salmon (Salmo salar) using a primary hepatocyte culture as a model. We employed two forms of sulphide donors: the fast-releasing salt form, sodium hydrosulphide (NaHS) and the slow-releasing organic analogue, morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate (GYY4137). Hepatocytes were exposed to either a low (LD, 20 µg/L) or high (HD, 100 µg/L) dose of the sulphide donors for 24 hrs, and the expression of key sulphide detoxification and antioxidant defence genes were quantified by qPCR. The key sulphide detoxification genes sulfite oxidase 1 (soux) and the sulfide: quinone oxidoreductase 1 and 2 (sqor) paralogs in salmon showed pronounced expression in the liver and likewise responsive to the sulphide donors in the hepatocyte culture. These genes were ubiquitously expressed in different organs of salmon as well. HD-GYY4137 upregulated the expression of antioxidant defence genes, particularly glutathione peroxidase, glutathione reductase and catalase, in the hepatocyte culture. To explore the influence of exposure duration, hepatocytes were exposed to the sulphide donors (i.e., LD versus HD) either transient (1h) or prolonged (24h). Prolonged but not transient exposure significantly reduced hepatocyte viability, and the effects were not dependent on concentration or form. The proliferative potential of the hepatocytes was only affected by prolonged NaHS exposure, and the impact was not concentration dependent. Microarray analysis revealed that GYY4137 caused more substantial transcriptomic changes than NaHS. Moreover, transcriptomic alterations were more marked following prolonged exposure. Genes involved in mitochondrial metabolism were downregulated by the sulphide donors, primarily in NaHS-exposed cells. Both sulphide donors influenced the immune functions of hepatocytes: genes involved in lymphocyte-mediated response were affected by NaHS, whereas inflammatory response was targeted by GYY4137. In summary, the two sulphide donors impacted the cellular and molecular processes of teleost hepatocytes, offering new insights into the mechanisms underlying H2S interactions in fish.


Subject(s)
Salmo salar , Water Pollutants, Chemical , Animals , Salmo salar/genetics , Transcriptome , Antioxidants , Water Pollutants, Chemical/toxicity , Sulfides/toxicity , Hepatocytes , Mammals
8.
Fish Shellfish Immunol ; 134: 108590, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36746227

ABSTRACT

The molecular processes underlying skin wound healing in several fish species have been elucidated in the last years, however, metabolomic insights are scarce. Here we report the skin mucus metabolome of wounded and non-wounded gilthead seabream (Sparus aurata) fed with silk fibroin microparticles, a functional additive considered to accelerate the wound healing process. The three experimental diets (commercial diet enriched with 0 mg (control), 50 mg or 100 mg of silk fibroin microparticles Kg-1) were administered for 30 days and thereafter, a skin wound was inflicted. Skin mucus was collected on day 30 of feeding and 7 days post-wounding and subjected to metabolomic analysis by Ultra Performance Liquid Chromatography coupled with a high-resolution quadrupole-orbitrap mass spectrometry. The most enriched metabolite class was amino acids and derivatives, followed by nucleotides, nucleosides and analogues and carbohydrates and their derivatives. Metabolomic profiles revealed that the diet had a more profound effect than wounding in skin mucus. Metabolic pathway analysis of significantly affected metabolites revealed perturbations in the aminoacyl t-RNA biosynthesis in the skin. In particular, skin wound resulted in a decreased methionine level in mucus. Further, silk fibroin supplementation increased methionine level in skin mucus, which correlated with several wound morphometric parameters that characterized the epithelial healing capacity in seabream. The results provided new insight into the physiological consequences of skin wounds and how these processes could be influenced by dietary manipulation.


Subject(s)
Diet , Dietary Supplements , Fibroins , Mucus , Skin , Wound Healing , Diet/veterinary , Fibroins/pharmacology , Metabolome , Methionine/metabolism , Mucus/metabolism , Sea Bream , Skin/drug effects , Skin/injuries , Skin/metabolism , Wound Healing/drug effects , Animals
9.
J Fish Biol ; 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36807134

ABSTRACT

Various cleaner fish species, such as the lumpfish (Cyclopterus lumpus L.), are used in the sea cage production of Atlantic salmon (Salmo salar L.) as a control measure against the ectoparasitic salmon louse (Lepeophtheirus salmonis). Nonetheless, during severe lice infestation, alternative treatments are required to control parasitic burden. The aim of this study was to gain insight into how lumpfish skin responds to different chemicals used to treat parasites. The authors collected skin from lumpfish from both research facilities (tank-reared fish) and commercial production (cage-reared fish) and used operational welfare indicators, in vitro models, histology and transcriptomics to study how the skin responded to two anti-parasitic oxidative chemicals, hydrogen peroxide (H2 O2 ) and peracetic acid. Lumpfish sampled from the farm were classified as clinically healthy or weak based on their morbidity status, and fish from each category were used to gain insight into how the therapeutics affect the skin barrier. Differences between healthy and weakened (moribund) fish, and between treated fish from each of the two groups, were observed. Histological examination showed an overall reduced skin quality in fish characterized as moribund, including different grades of exposed bony plates. In vitro oxidant-treated lumpfish skin had reduced the migration capacity of keratocytes, a weakened epidermal barrier, and altered gene transcription, changes that are known predisposing factors to secondary infections. Skin from non-treated, healthy fish sampled from commercial farms exhibited similar features and attributes to oxidant-exposed tank-reared fish from a research facility, suggesting that apparently healthy cage-held lumpfish exhibited stress responses in the epidermal barrier. The results of the study outline the risks and consequences lumpfish can face if accidentally subjected to potential anti-parasitic oxidant treatments aimed at Atlantic salmon. It also strengthens the evidence behind the requirement that lumpfish should be removed from the cages before being potentially exposed to this type of treatment and outlines the potential risks of differing husbandry practices upon lumpfish health, welfare and resilience.

10.
Toxicol Rep ; 9: 1461-1471, 2022.
Article in English | MEDLINE | ID: mdl-36518465

ABSTRACT

Peracetic acid (PAA) is an organic peroxide that produces free radicals, which contribute to its potent disinfection power. At therapeutic doses, PAA is considered a mild stressor that can trigger transient local and systemic oxidative stress in fish, but the resulting consequences in the brain have yet to be identified. Therefore, we report the brain transcriptome of Atlantic salmon (Salmo salar) smolts that have been periodically exposed to PAA. Fish were treated three times (every 15 days) with PAA with either short (15 min) or long (30 min) exposure periods. After the third treatment, the whole brain was collected and subjected to biochemical and transcriptomic analyses. The level of reactive oxygen species in the brain was not significantly affected by recurrent PAA treatments. Microarray analysis was performed on the whole brain and revealed 205 differentially expressed genes (DEGs), regardless of the duration of the treatment. The short exposure duration had a more considerable impact on the brain transcriptome, correlating with 70% more DEGs than the long exposure. Strikingly, the brain transcriptome was characterised by the downregulation of gene expression, especially in the short exposure group, and around 82% of the identified DEGs were downregulated. Some of the highly affected genes were key molecules of the vasotocinergic and isotocinergic systems and the corticotropin-releasing factor signalling system, indicating interference of the stress axis but could also suggest an anxiolytic effect. In addition, there were alterations in genes involved in cellular metabolism and processing, signalling and trafficking, and innate immunity, which underscores the physiological changes in the brain following recurrent PAA treatment. Overall, the transcriptomic data reveal that recurrent oxidant treatment could influence brain functions, and although the magnitude was marginal, the alterations suggested neurological adaptations of fish to PAA as a potential chemical stressor. The results identify the risks of PAA, which would be valuable in drafting a framework for its empirically driven use in fish farming.

11.
Front Physiol ; 13: 1083672, 2022.
Article in English | MEDLINE | ID: mdl-36582361

ABSTRACT

Hydrogen sulphide (H2S) is a gas that affects mucosal functions in mammals. However, its detrimental effects are less understood in fish despite being known to cause mass mortality. Here we used explant models to demonstrate the transcriptional responses of Atlantic salmon (Salmo salar) mucosa to the sulphide donor sodium hydrosulphide (NaHS). The study focused on two groups of genes: those encoding for sulphide detoxification and those for mucins. Moreover, we performed pharmacological studies by exposing the organ explants to mucus-interfering compounds and consequently exposed them to a sulphide donor. Exposure to NaHS significantly affected the expression of sulphide:quinone oxidoreductase (sqor1, sqor2) and mucin-encoding genes (muc5ac, muc5b). The general profile indicated that NaHS upregulated the expression of sulphide detoxification genes while a significant downregulation was observed with mucins. These expression profiles were seen in both organ explant models. Pharmacological stimulation and inhibition of mucus production used acetylcholine (ACh) and niflumic acid (NFA), respectively. This led to a significant regulation of the two groups of marker genes in the gills and olfactory rosette explants. Treatment of the mucosal organ explants with the mucus-interfering compounds showed that low dose NFA triggered more substantial changes while a dose-dependent response could not be established with ACh. Pharmacological interference demonstrated that mucins played a crucial role in mucosal protection against H2S toxicity. These results offer insights into how a sulphide donor interfered with mucosal responses of Atlantic salmon and are expected to contribute to our understanding of the least explored H2S-fish interactions-particularly at the mucosa.

12.
Fish Shellfish Immunol ; 130: 612-623, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150413

ABSTRACT

The present study investigated the involvement of key molecular regulators of oxidative stress in amoebic gill disease (AGD), a parasitic infestation in Atlantic salmon. In addition, the study evaluated how these molecular biomarkers responded when AGD-affected fish were exposed to a candidate chemotherapeutic peracetic acid (PAA). Atlantic salmon were experimentally infected with the parasite Neoparameoba perurans, the causative agent of AGD, by bath exposure and after 2 weeks, the fish were treated with three commercial PAA products (i.e., Perfectoxid, AquaDes and ADDIAqua) at a dose of 5 ppm. Two exposure durations were evaluated - 30 min and 60 min. Sampling was performed 24 h and 2 weeks after PAA treatment (equivalent to 2- and 4-weeks post infection). At each sampling point, the following parameters were evaluated: gross gill pathology, gill parasitic load, plasma reactive oxygen species (ROS) and total antioxidant capacity (TAC), histopathology and gene expression profiling of genes with key involvement in oxidative stress in the gills and olfactory organ. AGD did not result in systemic oxidative stress as ROS and TAC levels remained unchanged. There were no clear patterns of AGD-mediated regulation of the oxidative stress biomarkers in both the gills and olfactory organ; significant changes in the expression were mostly related to time rather than infection status. However, the expression profiles of the oxidative stress biomarkers in AGD-affected salmon, following treatment with PAA, revealed that gills and olfactory organ responded differently - upregulation was prominent in the gills while downregulation was more frequent in the olfactory organ. The expression of catalase, glutathione S-transferase and thioredoxin reductase 2 was significantly affected by the treatments, both in the gills and olfactory organ, and these alterations were influenced by the duration of exposure and PAA product type. Parasitic load in the gills did significantly increase after treatment regardless of the product and exposure duration; the parasite was undetectable in some fish treated with AquaDes for 30 mins. However, PAA treated groups for 30 min showed lower macroscopic gill scores than the infected-untreated fish. Histology disclosed the classic pathological findings such as multifocal hyperplasia and increased number of mucous cells in AGD-affected fish. Microscopic scoring of gill injuries showed that AGD-infected-PAA-treated fish had lower scores, however, an overall trend could not be established. The morphology and structural integrity of the olfactory organ were not significantly altered by parasitism or PAA treatment. Collectively, the results indicate that AGD did not affect the systemic and mucosal oxidative status of Atlantic salmon. However, such a striking profile was changed when AGD-affected fish were exposed to oxidative chemotherapeutics. Moreover, the gills and olfactory organ demonstrated distinct patterns of gene expression of oxidative stress biomarkers in AGD-infected-PAA-treated fish. Lastly, PAA treatment did not fully resolve the infection, but appeared not to worsen the mucosal health either.


Subject(s)
Amebiasis , Fish Diseases , Parasites , Salmo salar , Amebiasis/drug therapy , Amebiasis/parasitology , Amebiasis/veterinary , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Catalase/metabolism , Fish Diseases/genetics , Gills/metabolism , Glutathione Transferase/metabolism , Oxidative Stress , Peracetic Acid , Reactive Oxygen Species/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Thioredoxin Reductase 2/metabolism
13.
Front Immunol ; 13: 948897, 2022.
Article in English | MEDLINE | ID: mdl-36090977

ABSTRACT

Treatment development for parasitic infestation is often limited to disease resolution as an endpoint response, and physiological and immunological consequences are not thoroughly considered. Here, we report the impact of exposing Atlantic salmon affected with amoebic gill disease (AGD) to peracetic acid (PAA), an oxidative chemotherapeutic. AGD-affected fish were treated with PAA either by exposing them to 5 ppm for 30 min or 10 ppm for 15 min. Unexposed fish from both infected and uninfected groups were also included. Samples for molecular, biochemical, and histological evaluations were collected at 24 h, 2 weeks, and 4 weeks post-treatment. Behavioral changes were observed during PAA exposure, and post-treatment mortality was higher in the infected and PAA treated groups, especially in 10 ppm for 15 min. Plasma indicators showed that liver health was affected by AGD, though PAA treatment did not exacerbate the infection-related changes. Transcriptome profiling in the gills showed significant changes, triggered by AGD and PAA treatments, and the effects of PAA were more notable 24 h after treatment. Genes related to immune pathways of B- and T- cells and protein synthesis and metabolism were downregulated, where the magnitude was more remarkable in 10 ppm for 15 min group. Even though treatment did not fully resolve the pathologies associated with AGD, 5 ppm for 30 min group showed lower parasite load at 4 weeks post-treatment. Mucous cell parameters (i.e., size and density) increased within 24 h post-treatment and were significantly higher at termination, especially in AGD-affected fish, with some treatment effects influenced by the dose of PAA. Infection and treatments resulted in oxidative stress-in the early phase in the gill mucosa, while systemic reactive oxygen species (ROS) dysregulation was evident at the later stage. Infected fish responded to elevated circulating ROS by increasing antioxidant production. Exposing the fish to a crowding stress revealed the interference in the post-stress responses. Lower cortisol response was displayed by AGD-affected groups. Collectively, the study established that PAA, within the evaluated treatment protocols, could not provide a convincing treatment resolution and, thus, requires further optimization. Nonetheless, PAA treatment altered the mucosal immune and stress responses of AGD-affected Atlantic salmon, shedding light on the host-parasite-treatment interactions. .


Subject(s)
Parasites , Salmo salar , Amebiasis , Animals , Fish Diseases , Mucous Membrane , Oxidants , Peracetic Acid , Reactive Oxygen Species
14.
Toxics ; 10(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36136474

ABSTRACT

Oxidative stress is a condition caused by an imbalance in the occurrence of reactive oxygen species in the cells and tissues of organisms. An ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed for the simultaneous determination of two oxidative stress biomarkers, 8-hydroxydeoxyguanosine (8OHDG) and dityrosine (DIY), in the gills, skin, dorsal fin, and liver tissue of Atlantic salmon (Salmo salar) parr. The use of target analyte-specific 13C and 15N internal standards allowed quantification of each target analyte to be performed through the standard solvent calibration curve. The relative recoveries [mean ± (relative standard deviation%)] of 8OHDG and DIY were 101 ± 11 and 104 ± 13% at a fortified concentration of 10 ng/mL (8OHDG) and 500 ng/mL (DIY), respectively, ensuring the accuracy of the extraction and quantification. The chromatographic separation was carried out using a gradient elution program with a total run time of 5 min. The limits of detection (LODs) were 0.11 and 1.37 ng/g wet weight (w.w.) for 8OHDG and DIY, respectively. To demonstrate the applicability of the developed method, it was applied in 907 tissue samples that were collected from Atlantic salmon parr individuals reared in an experimental land-based recirculating aquaculture system (RAS) treated with peracetic acid. Moreover, the possibility of using the dorsal fin as an alternative matrix for the minimally invasive assessment of oxidative stress in Atlantic salmon parr was introduced. To our knowledge, 8OHDG and DIY were used for the first time as biomarkers for biomonitoring the fish health (oxidative stress) of Atlantic salmon parr in RAS.

15.
Front Physiol ; 13: 900593, 2022.
Article in English | MEDLINE | ID: mdl-35694392

ABSTRACT

Peracetic acid (PAA) is an oxidative disinfectant with a broad spectrum of antimicrobial activity and low environmental impact. In this study, we investigated the physiological impacts of PAA application in Atlantic salmon (Salmo salar) parr reared in freshwater recirculating aquaculture systems over a 4-week period. PAA at a target concentration of 1 mg/L was administered either in pulse (every 3 days) or continuous. The group that did not receive PAA served as a control. Fish tissue samples were collected for histology, gene expression, and biochemical analyses at day 0 and after 2 and 4 weeks of exposure. The expression of genes encoding for antioxidant defence in the olfactory organs, skin, and gills changed during the trial, but the temporal effects were more pronounced than inter-treatment impacts. The glutathione group of antioxidant genes was more responsive to PAA. In most cases, an upregulation was observed. Significantly lower levels of reactive oxygen species were identified in the plasma and skin mucus of the two PAA-exposed groups at week 4; nonetheless, significantly increased levels of total antioxidant capacity were only observed in the skin mucus of fish from the continuous treatment group. Additional markers of oxidative stress (i.e., 8-oxo-2'-deoxyguanosine and o,o'-dityrosine) were analysed in the skin, gills, liver, and dorsal fins. These markers were unaffected by the two PAA treatments. Sporadic reversible structural alterations were observed in the three mucosal organs; the changes were time-dependent, and the effects of PAA treatment were minimal. The number of mucous cells varied over time but not within treatments except in the skin of the pulse group at week 4 where a reduction was observed. The ratio of acidic and neutral mucous cells in the skin and gills were affected by PAA treatments especially in the pulse group. Overall, this study revealed that Atlantic salmon parr mobilised mucosal and systemic antioxidant defences against the oxidative disinfectant PAA, but it was evident that the mode of application did not impose a strong influence. The minimal effects of PAA application on the indicators of health and welfare underscore the potential use of PAA as a routine disinfectant in recirculating aquaculture systems.

16.
Sci Total Environ ; 843: 157009, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35772561

ABSTRACT

In land-based recirculating aquaculture systems (RAS), the accumulation of dissolved organic matter (DOM) can have detrimental effects on water quality impacting the system performance, microbial community, and consequently fish health and welfare. Ozone is used in the RAS water treatment process to improve water quality and remove DOM. However, little is known about the molecular composition of DOM in RAS and its transformation when exposed to ozone. In this study, we performed a detailed molecular characterization of DOM in RAS and explored its transformation induced by ozonation of RAS waters. Ultra-high resolution (UHR) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) was used to characterize the DOM matrix of RAS waters (pump-sump and tanks) and to evaluate its transformation by ozonation. The analysis of DOM extracted from makeup water and feed samples allowed for the determination of DOM sources in RAS prior to ozonation. The CHO and unsaturated group of compounds were the most abundant class found in water samples. On the contrary, the DOM from feed samples was unique and consisted mainly of CHO, CHON and unsaturated group of compounds. After the ozonation of RAS waters, humic-like and unsaturated compounds [positive oxygen subtracted double bond equivalent per carbon (DBE-O)/C)] were decomposed, particularly the CHO-DOM that contained fewer -CH2- features. Fulvic-like compounds and several hundred saturated compounds [negative (DBE-O)/C)] were formed post ozonation, particularly the CHON and CHONS group of compounds that were associated with fish diets, makeup waters and transformation products from the ozonation of the RAS waters. This study showed that the high accuracy of the ultra-high resolution FTICR MS can be applied to characterize and monitor the changes of DOM at a molecular level in RAS waters. To our knowledge, this is the first study where FTICR MS was incorporated for the characterization of DOM and its sources in RAS.


Subject(s)
Ozone , Animals , Aquaculture , Cyclotrons , Dissolved Organic Matter , Fourier Analysis , Mass Spectrometry
17.
Microb Pathog ; 166: 105553, 2022 May.
Article in English | MEDLINE | ID: mdl-35472502

ABSTRACT

Metabolomics can provide insights into the dynamic small-molecule fluctuations occurring in response to infection and has become a valuable tool in studying the pathophysiology of diseases in recent years. However, its application in fish disease research is limited. Here, we report the circulating plasma metabolome of Atlantic salmon (Salmo salar) experimentally infected with Neoparamoeba perurans-the causative agent of amoebic gill disease (AGD). Plasma samples were collected from fish with varying degrees of infection inferred from an external gross morphological score of gill pathology (i.e., gill score [GS] 1 -- GS3), where a higher GS indicates advanced infection stage. Uninfected fish (GS0) served as the control. Typical pathologies associated with AGD infection, such as hyperplastic lesions and lamellar fusion, were evident in infected gill samples. Plasma metabolites were identified by ultra-performance liquid chromatography coupled with a high-resolution quadrupole-orbitrap mass spectrometer. Identification of compounds were performed at four levels of certainty, where level 1 provided the most accurate compound identity. A total of 900 compounds were detected in the samples of which 143 were annotated at level 3, 68 on level 2b, 74 on level 2a, and 66 on level 1. Versus GS0, GS1 showed the highest number of significantly affected metabolites (104), which decreased with a higher GS. Adrenaline and adenosine were the two Level 1 compounds significantly affected by AGD regardless of GS, with the former increasing and the latter decreasing in infected fish. Hippuric acid significantly increased in GS1 and GS2, while the tryptophan metabolite indole-3-lactic acid decreased in response to the initial stage of infection but returned to basal levels at a higher GS. There were ten significantly affected metabolic pathways: Eight of which were significantly downregulated while two were downregulated in GS1 relative to GS0. The super-pathway of purine nucleotide salvage was enriched both within the upregulated metabolites in GS1vsGS0 and the down-regulated metabolites in GS3vsGS1. This is the first report on the circulating plasma metabolome of AGD infected salmon, and the results show that low infection levels resulted in a more dramatic metabolomic dysregulation than advanced infection stages. The metabolites identified are potential biological markers for the systemic physiological impact of AGD.


Subject(s)
Amebiasis , Fish Diseases , Salmo salar , Animals , Fish Diseases/metabolism , Gills/metabolism , Metabolome
18.
BMC Zool ; 7(1): 1, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-37170301

ABSTRACT

BACKGROUND: Fish encounter oxidative stress several times during their lifetime, and it has a pervasive influence on their health and welfare. One of the triggers of oxidative stress in fish farming is the use of oxidative disinfectants to improve rearing conditions, especially in production systems employing recirculation technology. Here we report the physiological and morphological adaptive responses of Atlantic salmon (Salmo salar L.) post-smolts to intermittent exposure to a potent oxidative agent peracetic acid (PAA). Fish reared in semi-commercial scale brackish water recirculating aquaculture system (RAS) were exposed to 1 ppm PAA every 3 days over 6 weeks. Mucosal and systemic responses were profiled before exposure, 22 and 45 days during the intermittent PAA administration. RESULTS: Oxidative stress was likely triggered as plasma antioxidant capacity increased significantly during the exposure period. Adaptive stress response to the periodic oxidant challenge was likewise demonstrated in the changes in plasma glucose and lactate levels. PAA-induced alterations in the transcription of antioxidants, cytokines, heat shock proteins and mucin genes showed a tissue-specific pattern: downregulation was observed in the gills and olfactory rosette, upregulation occurred in the skin, and no substantial changes in the liver. Further, PAA exposure resulted in histological changes in key mucosal organs (i.e. olfactory rosette, skin and gills); pathological alterations were predominant in the gills where cases of epithelial lifting, hypertrophy and clubbing were prevalent. In addition, intermittent PAA administration resulted in an apparent overproduction of mucus in the nasal mucosa. Lastly, PAA did not dramatically alter the ability of salmon to mount a physiological stress response in the presence of a secondary stressor, though some subtle interference was documented in the kinetics and magnitude of plasma cortisol and glucose response post-stress. CONCLUSIONS: The present study collectively demonstrated that intermittent oxidant exposure was a mild environmental stressor that salmon could mount strong adaptive responses at systemic and mucosal levels. The results will be valuable in optimising the rearing conditions of post-smolts in RAS, especially in adopting water treatment strategies that do not considerably interfere with fish health and welfare.

19.
Fish Shellfish Immunol ; 120: 1-10, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34758396

ABSTRACT

Hydrogen sulphide (H2S) is a known mediator of immunity, but the regulatory function of its exogenous form is not well understood in fish particularly in the mucosa. Here we report transcriptomic changes in the nasal leukocytes of Atlantic salmon (Salmo salar) following exposure to two forms of H2S donors - the salt sodium hydrosulfide (NaHS) and the organic analogue morpholin-4-ium 4-methoxyphenyl (morpholino) phosphinodithioate (GYY4137). Nasal leukocytes were exposed to three concentrations (1, 10 and 100 µM) of either of the two H2S forms for 24 h before the cells were checked for viability and collected for microarray analysis. Though cellular viability was minimally affected by the exposure to two H2S donors, GYY4137-exposed cells exhibited reduced viability compared with the NaHS group at the highest dose. The H2S-induced transcriptomic changes in the nasal leukocytes were concentration-dependent regardless of the sulphide forms. However, a larger number of differentially expressed genes (DEGs) were identified in the NaHS-exposed versus GYY4137-exposed groups across concentrations. In all comparisons, at least 53% of the DEGs identified were significantly upregulated. Gene ontology (GO) terms enriched in the lists of upregulated DEGs at higher concentrations included ferric iron binding. A comparison of the two H2S forms showed a clear grouping of different GO terms relative to concentrations. Pathway enrichment analysis revealed a significant influence in VEGF ligand-receptor interactions, oxidative stress, innate and adaptive immunity, and interleukin signalling especially at higher concentrations. Congruence analysis demonstrated that there were 16 GO terms overlapping; of these, 12 were upregulated by both sulphide donors including several involving iron binding and transport. The study offers the first molecular insights into how fish nasal leukocytes respond to exogenous H2S, and the results will be vital in resolving the regulatory function of H2S on mucosal immunity in fish.


Subject(s)
Leukocytes , Salmo salar , Sulfides , Animals , Gene Expression Regulation , Iron , Salmo salar/genetics , Salmo salar/immunology , Sulfides/immunology , Transcriptome
20.
Antioxidants (Basel) ; 10(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34943035

ABSTRACT

Although chemotherapeutics are used to treat infections in farmed fish, knowledge on how they alter host physiology is limited. Here, we elucidated the physiological consequences of repeated exposure to the potent oxidative chemotherapeutic peracetic acid (PAA) in Atlantic salmon (Salmo salar) smolts. Fish were exposed to the oxidant for 15 (short exposure) or 30 (long exposure) minutes every 15 days over 45 days. Unexposed fish served as the control. Thereafter, the ability of the remaining fish to handle a secondary stressor was investigated. Periodic chemotherapeutic exposure did not affect production performance, though survival was lower in the PAA-treated groups than in the control. Increased ventilation, erratic swimming, and a loss of balance were common behavioural manifestations during the oxidant exposure. The plasma reactive oxygen species levels increased in the PAA-treated groups, particularly after the third exposure, suggesting an alteration in the systemic oxidative stress status. Plasma indicators for internal organ health were affected to a certain degree, with the changes mainly observed after the second and third exposures. Metabolomics disclosed that the oxidant altered several circulating metabolites. Inosine and guanosine were the two metabolites significantly affected by the oxidative stressor, regardless of exposure time. A microarray analysis revealed that the gills and liver were more responsive to the oxidant than the skin, with the gills being the most sensitive. Moreover, the magnitude of the transcriptomic modifications depended on the exposure duration. A functional analysis showed that genes involved in immunity and ribosomal functions were significantly affected in the gills. In contrast, genes crucial for the oxidation-reduction process were mainly targeted in the liver. Skin mucus proteomics uncovered that the changes in the mucosal proteome were dependent on exposure duration and that the oxidant interfered with ribosome-related processes. Mucosal mapping revealed gill mucous cell hypertrophy after the second and third exposures, although the skin morphological parameters remained unaltered. Lastly, repeated oxidant exposures did not impede the ability of the fish to mount a response to a secondary stressor. This study provides insights into how a chemical oxidative stressor alters salmon physiology at both the systemic and mucosal levels. This knowledge will be pivotal in developing an evidence-driven approach to the use of oxidative therapeutics in fish, with some of the molecules and pathways identified as potential biomarkers and targets for assessing the physiological cost of these treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...