Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 12163, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842433

ABSTRACT

The analysis of experimental data of the solar irradiance, collected on the marine surface, clearly highlights the intrinsic stochasticity of such an environmental parameter. Given this result, effects of randomly fluctuating irradiance on the population dynamics of a marine ecosystem are studied on the basis of the stochastic 0-dimensional biogeochemical flux model. The noisy fluctuations of the irradiance are formally described as a multiplicative Ornstein-Uhlenbeck process, that is a self-correlated Gaussian noise. Nonmonotonic behaviours of the variance of the marine populations' biomass are found with respect to the intensity and the autocorrelation time of the noise source, manifesting a noise-induced transition of the ecosystem to an out-of-equilibrium steady state. Moreover, evidence of noise-induced effects on the organic carbon cycling processes underlying the food web dynamics are highlighted. The reported results clearly show the profound impact the stochastic environmental variables can have on both the populations and the biogeochemistry at the basis of a marine trophic network.


Subject(s)
Ecosystem , Food Chain , Biomass , Population Dynamics , Stochastic Processes
2.
Phys Rev E ; 103(1-1): 012401, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601500

ABSTRACT

We demonstrate that a simple model based on reaction-diffusion-advection (RDA) equation forced by realistic surface velocities and nutrients is skilled in reproducing the distributions of the surface phytoplankton chlorophyll in the tropical Pacific. We use the low-complexity RDA model to investigate the scale relationships in the impact of different drivers (turbulent diffusion, mean and eddy advection, primary productivity) on the phytoplankton chlorophyll concentrations. We find that in the 1/4^{∘} (∼25 km) model, advection has a substantial impact on the rate of primary productivity, while the turbulent diffusion term has a fairly negligible impact. Turbulent diffusion has an impact on the phytoplankton variability, with the impact being scale propagated and amplified by the larger scale surface currents. We investigate the impact of a surface nutrient decline and some changes to mesoscale eddy kinetic energy (climate change projections) on the surface phytoplankton concentrations. The RDA model suggests that unless mesoscale eddies radically change, phytoplankton chlorophyll scales sublinearly with the nutrients, and it is relatively stable with respect to the nutrient concentrations. Furthermore, we explore how a white multiplicative Gaussian noise introduced into the RDA model on its resolution scale propagates across spatial scales through the nonlinear model dynamics under different sets of phytoplankton drivers. The unifying message of this work is that the low-complexity (e.g., RDA) models can be successfully used to realistically model some specific aspects of marine ecosystem dynamics and by using those models one can explore many questions that would be beyond computational affordability of the higher-complexity ecosystem models.


Subject(s)
Models, Statistical , Phytoplankton , Tropical Climate
3.
J Geophys Res Oceans ; 126(10): e2021JC017690, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35864821

ABSTRACT

A radiative transfer model was parameterized and validated using Biogeochemical Argo float data acquired between 2012 and 2017 across the Mediterranean Sea. Fluorescence-derived chlorophyll a concentration, particulate optical backscattering at 700 nm, and fluorescence of chromophoric dissolved organic matter (CDOM) were used to parametrize the light absorption and scattering coefficients of the optically significant water constituents (such as pure water, non-algal particles, CDOM, and phytoplankton). The model was validated with in situ downwelling irradiance profiles and apparent optical properties derived both from irradiance profiles and satellite data, such as the diffuse attenuation coefficients and remote sensing reflectance. Results showed that by using regional parameterizations that are not only related to chlorophyll concentration and vertical distribution, the model was able to capture a more accurate spectral response in the examined wavelength range compared to chlorophyll-related (or Case 1) optical models. When using alternative models that incorporated also measurements of CDOM fluorescence or particulate optical backscattering, the model skill increased at all examined wavelengths. Finally, using a multi-spectral optical configuration also enabled the estimation of the relative contribution of separate water constituents in the examined spectral range. Simulations including non-algal particles and CDOM performed up to 61% and 79% better than when considering the optical properties of pure seawater alone. Moreover, a simulation including phytoplankton light absorption resulted in an error reduction of up to 42%, especially at 412 nm and with a more uniform response at the wavelengths considered.

4.
Sci Rep ; 10(1): 15968, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994514

ABSTRACT

Intraplaque angiogenesis increases the chance of unstable atherosclerotic plaque rupture and thrombus formation leading to myocardial infarction. Basic Fibroblast Growth Factor (bFGF) plays a key role in angiogenesis and inflammation and is involved in the pathogenesis of atherosclerosis. Therefore, we aim to test K5, a small molecule bFGF-inhibitor, on remodelling of accelerated atherosclerotic vein grafts lesions in ApoE3*Leiden mice. K5-mediated bFGF-signalling blockade strongly decreased intraplaque angiogenesis and intraplaque hemorrhage. Moreover, it reduced macrophage infiltration in the lesions by modulating CCL2 and VCAM1 expression. Therefore, K5 increases plaque stability. To study the isolated effect of K5 on angiogenesis and SMCs-mediated intimal hyperplasia formation, we used an in vivo Matrigel-plug mouse model that reveals the effects on in vivo angiogenesis and femoral artery cuff model to exclusively looks at SMCs. K5 drastically reduced in vivo angiogenesis in the matrigel plug model while no effect on SMCs migration nor proliferation could be seen in the femoral artery cuff model. Moreover, in vitro K5 impaired endothelial cells functions, decreasing migration, proliferation and tube formation. Our data show that K5-mediated bFGF signalling blockade in hypercholesterolemic ApoE3*Leiden mice reduces intraplaque angiogenesis, haemorrhage and inflammation. Therefore, K5 is a promising candidate to stabilize advanced atherosclerotic plaques.


Subject(s)
Apolipoproteins E/genetics , Fibroblast Growth Factor 2/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Plaque, Atherosclerotic/drug therapy , Small Molecule Libraries/administration & dosage , Animals , Cell Line , Cell Proliferation/drug effects , Chemokine CCL2/metabolism , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Molecular Structure , Neovascularization, Pathologic/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Small Molecule Libraries/pharmacology , Versicans/metabolism
5.
Molecules ; 24(9)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035548

ABSTRACT

In this work, the synthesis of the cannabinoid receptor 1 neutral antagonists 8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-4,5-dihydrobenzo-1H-6-oxa-cyclohepta[1,2-c]pyrazole-3-carboxamide 1a and its deaza N-cyclohexyl analogue 1b has led to a deepening of the structure-activity studies of this class of compounds. A series of novel 4,5-dihydrobenzo-oxa-cycloheptapyrazoles analogues of 1a,b, derivatives 1c-j, was synthesized, and their affinity towards cannabinoid receptors was determined. Representative terms were evaluated using in vitro tests and isolated organ assays. Among the derivatives, 1d and 1e resulted in the most potent CB1 receptor ligands (KiCB1 = 35 nM and 21.70 nM, respectively). Interestingly, both in vitro tests and isolated organ assays evidenced CB1 antagonist activity for the majority of the new compounds, excluding compound 1e, which showed a CB1 partial agonist behaviour. CB1 antagonist activity of 1b was further confirmed by a mouse gastrointestinal transit assay. Significant activity of the new CB1 antagonists towards food intake was showed by preliminary acute assays, evidencing the potentiality of these new derivatives in the treatment of obesity.


Subject(s)
Drug Development , Oxygen/chemistry , Pyrazoles/chemistry , Receptor, Cannabinoid, CB1/chemistry , Animals , Biomarkers , Cell Line , Dose-Response Relationship, Drug , Ligands , MAP Kinase Signaling System/drug effects , Male , Mice , Models, Molecular , Molecular Structure , Organ Specificity/drug effects , Phosphorylation/drug effects , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Structure-Activity Relationship
6.
Sci Total Environ ; 670: 379-397, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30904652

ABSTRACT

Assessing and managing cumulative impacts produced by interactive anthropogenic and natural drivers is a major challenge to achieve the sustainable use of marine spaces in line with the objectives of relevant EU acquis. However, the complexity of the marine environment and the uncertainty linked to future climate and socio-economic scenarios, represent major obstacles for understanding the multiplicity of impacts on the marine ecosystems and to identify appropriate management strategies to be implemented. Going beyond the traditional additive approach for cumulative impact appraisal, the Cumulative Impact Index (CI-Index) proposed in this paper applies advanced Multi-Criteria Decision Analysis techniques to spatially model relationships between interactive climate and anthropogenic pressures, the environmental exposure and vulnerability patterns and the potential cumulative impacts for the marine ecosystems at risk. The assessment was performed based on spatial data characterizing location and vulnerability of 5 relevant marine targets (e.g. seagrasses and coral beds), and the distribution of 17 human activities (e.g. trawling, maritime traffic) during a reference scenario 2000-2015. Moreover, projections for selected physical and biogeochemical parameters (temperature and chlorophyll 'a') for the 2035-2050 timeframe under RCP8.5 scenario, were integrated in the assessment to evaluate index variations due to changing climate conditions. The application of the CI-Index in the Adriatic Sea, showed higher cumulative impacts in the Northern part of the basin and along the Italian continental shelf, where the high concentration of human activities, the seawater temperature conditions and the presence of vulnerable benthic habitats, contribute to increase the overall impact estimate. Moreover, the CI-Index allowed understanding which are the phenomena contributing to synergic pressures creating potential pathways of environmental disturbance for marine ecosystems. Finally, the application in the Adriatic case showed how the output of the CI-Index can provide support to evaluate multi-risk scenarios and to drive sustainable maritime spatial planning and management.

7.
Chem Biol Drug Des ; 91(1): 181-193, 2018 01.
Article in English | MEDLINE | ID: mdl-28675787

ABSTRACT

Novel 1,4-dihydropyrazolo[3,4-a]pyrrolizine-, 4,5-dihydro-1H-pyrazolo[4,3-g]indolizine- and 1,4,5,6-tetrahydropyrazolo[3,4-c]pyrrolo[1,2-a]azepine-3-carboxamide-based compounds were designed and synthesized for cannabinoid CB1 and CB2 receptor interactions. Any of the new synthesized compounds showed high affinity for CB2 receptor with Ki values superior to 314 nm, whereas some of them showed moderate affinity for CB1 receptor with Ki values inferior to 400 nm. 7-Chloro-1-(2,4-dichlorophenyl)-N-(homopiperidin-1-yl)-4,5-dihydro-1H-pyrazolo[4,3-g]indolizine-3-carboxamide (2j) exhibited good affinity for CB1 receptor (Ki CB1  = 81 nm) and the highest CB2 /CB1 selectively ratio (>12). Docking studies carried out on such compounds were performed using the hCB1 X-ray in complex with the close pyrazole analogue AM6538 and disclosed specific pattern of interactions related to the tricyclic pyrrolopyrazole scaffolds as CB1 ligands.


Subject(s)
Pyrazoles/metabolism , Receptor, Cannabinoid, CB1/metabolism , Azepines/chemistry , Binding Sites , Half-Life , Humans , Ligands , Molecular Docking Simulation , Morpholines/chemistry , Morpholines/metabolism , Protein Binding , Protein Structure, Tertiary , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship
8.
Hypoxia (Auckl) ; 5: 45-59, 2017.
Article in English | MEDLINE | ID: mdl-28580362

ABSTRACT

PURPOSE: There is an urgent need to develop effective therapies and treatment strategies to treat hypoxic tumors, which have a very poor prognosis and do not respond well to existing therapies. METHODS: A novel hypoxia-targeting agent, KEMTUB012-NI2, was synthesized by conjugating a 2-nitroimidazole hypoxia-targeting moiety to a synthetic tubulysin, a very potent antimitotic. Its hypoxic selectivity and mode of action were studied in breast cancer cell lines. RESULTS: KEMTUB012-NI2 exhibited a similar selectivity for hypoxic cells to that of tirapazamine, a well-established hypoxia-targeting agent, but was >1,000 times more potent in cell cytotoxicity assays. The hypoxia-targeting mechanism for both KEMTUB012-NI2 and tirapazamine was selective and mediated by one-electron reductases. However, while cytochrome p450 reductase (POR) downregulation could inhibit tirapazamine cytotoxicity, it actually sensitized hypoxic cells to KEMTUB012-NI2. CONCLUSION: KEMTUB012-NI2 is a potent new agent that can selectively target hypoxic cancer cells. The hypoxia selectivity of KEMTUB012-NI2 and tirapazamine appears to be differentially activated by reductases. Since reductases are heterogeneously expressed in tumors, the different activation mechanisms will allow these agents to complement each other. Combining POR downregulation with KEMTUB012-NI2 treatment could be a new treatment strategy that maximizes efficacy toward hypoxic tumor cells while limiting systemic toxicity.

9.
Chemistry ; 23(24): 5842-5850, 2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28300330

ABSTRACT

Synthetic tubulysins 24 a-m, containing non-hydrolysable N-substituents on tubuvaline (Tuv), were obtained in high purity and good overall yields using a multistep synthesis. A key step was the formation of differently N-substituted Ile-Tuv fragments 10 by using an aza-Michael reaction of azido-Ile derivatives 8 with the α,ß-unsaturated oxo-thiazole 5. A structure-activity relationship study using a panel of human tumour cell lines showed strong anti-proliferative activity for all compounds 24 a-m, with IC50 values in the sub-nanomolar range, which were distinctly lower than those of tubulysin A, vinorelbine and paclitaxel. Furthermore, 24 a-m were able to overcome cross-resistance to paclitaxel and vinorelbine in two tumour cell lines with acquired resistance to doxorubicin. Compounds 24 e and 24 g were selected as leads to evaluate their mechanism of action. In vitro assays showed that both 24 e and 24 g interfere with tubulin polymerization in a vinca alkaloid-like manner and prevent paclitaxel-induced assembly of tubulin polymers. Both compounds exerted antimitotic activity and induced apoptosis in cancer cells at very low concentrations. Compound 24 e also exhibited potent antitumor activity at well tolerated doses on in vivo models of diffuse malignant peritoneal mesothelioma, such as MESOII peritoneal mesothelioma xenografts, the growth of which was not significantly affected by vinorelbine. These results indicate that synthetic tubulysins 24 could be used as standalone chemotherapeutic agents in difficult-to-treat cancers.


Subject(s)
Antineoplastic Agents/chemical synthesis , Tubulin Modulators/chemical synthesis , Tubulin/metabolism , Valine/analogs & derivatives , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HT29 Cells , Humans , Mice , Microscopy, Fluorescence , Neoplasms/drug therapy , Neoplasms/pathology , Paclitaxel/toxicity , Structure-Activity Relationship , Transplantation, Heterologous , Tubulin/chemistry , Tubulin Modulators/therapeutic use , Tubulin Modulators/toxicity , Valine/chemistry , Vinblastine/analogs & derivatives , Vinblastine/therapeutic use , Vinblastine/toxicity , Vinorelbine
10.
Eur J Med Chem ; 121: 194-208, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27240274

ABSTRACT

8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed.


Subject(s)
Piperidines/chemical synthesis , Piperidines/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Drug Discovery , Protein Binding , Structure-Activity Relationship
11.
Eur J Med Chem ; 103: 429-37, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26383127

ABSTRACT

New analogues (3a-l) of the previously described α4ß2 selective ligand 3-(6-halopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptanes (2a,b) have been synthesized and their binding activity for neuronal acetylcholine receptor subtypes α4ß2 and α7 were assayed. Six of these compounds (3a,b,c,j,k and l) showed high affinity and selectivity for α4ß2 receptors. The phenylpyridyl-diazabicycloheptane 3c displayed Ki value of 11.17 pM for α4ß2, in line with that of the halogenated homologues 3a,b, although it was characterized by an improved selectivity (Ki = 17 µM for α7 receptors). The influence of substitutions on the phenylpyridyl moiety on binding at both α4ß2 and α7 receptors has been examined through the Topliss decision tree analysis. Substitution with electron-donating groups (as CH3 and OCH3) resulted in a good affinity for α4ß2 receptors and substantially no affinity for α7. Amongst all the tested phenyl-substituted compounds, the p-NO2-phenyl substituted analogue 3j exhibited the highest α4ß2 affinity, with Ki value comparable to that of 3c. Intrinsic α4ß2 receptor mediated activity in [(3)H]-DA release assay was showed by compound 3a as well as by the reference analogue 2a, whereas phenyl substituted derivative 3c exhibited α4ß2 antagonist activity.


Subject(s)
Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacology , Drug Design , Receptors, Nicotinic/metabolism , Animals , Azabicyclo Compounds/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Rats , Structure-Activity Relationship
12.
Bioorg Med Chem ; 23(17): 5527-38, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26252963

ABSTRACT

Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.


Subject(s)
Alkanes/chemistry , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Molecular Structure , Structure-Activity Relationship
13.
J Cancer Res Clin Oncol ; 141(9): 1575-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25633717

ABSTRACT

PURPOSE: Tubulysins are natural tetrapeptides that inhibit tubulin polymerisation. Tubulysins are very potent inhibitors of mammalian cancer cell growth, but restricted availability has limited their characterisation and development as anti-cancer compounds. KEMTUB10 was recently developed as a synthetic analogue of natural tubulysins. METHODS: The cell cytotoxicity of KEMTUB10 was studied in cell lines that represent the main breast cancer sub-types. The KEMTUB10 pro-apoptotic mechanism of action was studied in MCF7 and MDAMB231 cells. RESULTS: KEMTUB10 exerts a potent cytotoxic effect in cells representing the main breast cancer sub-types. KEMTUB10 blocks cells in the G2/M phase of the cell cycle and is a strong stimulator of apoptosis/cell death. KEMTUB10-induced apoptosis involves p53 and Bim, and to some extent Bcl-2 phosphorylation. CONCLUSIONS: KEMTUB10 is a promising new anti-mitotic that exerts a potent cytotoxic effect in breast cancer cells, blocks cells in the G2/M phase of the cell cycle and stimulates apoptosis/cell death. KEMTUB10 has a distinct mode of action to taxol, appears to be sensitive to different molecular factors in cells and is likely subject to different mechanisms of acquired resistance. KEMTUB10 has the potential to be an important addition to the anti-cancer therapeutic armoury.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Oligopeptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Bcl-2-Like Protein 11 , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Receptor, ErbB-2/biosynthesis
14.
Eur J Med Chem ; 85: 747-57, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25134064

ABSTRACT

A series of dihydrothienocyclopentapyrazole-based derivatives was synthesized and evaluated for the affinity at CB1 and CB2 receptors. The major term, the 6-methyl-1-(1,4-dichlorophenyl)-N-piperidinyl)-1,4-dihydrothieno[2',3'-4,5]cyclopenta[1,2-c]pyrazole-3-carboxamide (6a), displayed a high affinity and good selectivity for CB2 receptors (Ki values of 2.30 nM for CB2 receptor and 440 nM for CB1 receptors respectively). Subsequent analogue preparation resulted in the identification of compounds such as 6b, 6d, 6e, 6k, 6l, 6m, 6s and 6t that showed 1.3-485 fold selectivity for CB2 receptors with potencies in the 1.1-7.2 nM range. These compounds profiled as full agonists at CB2 receptor in an inhibition assay of P-ERK 1/2 up regulation in HL-60 cells.


Subject(s)
Drug Design , Pyrazoles/chemistry , Pyrazoles/metabolism , Receptor, Cannabinoid, CB2/metabolism , HL-60 Cells , Humans , Ligands , Protein Binding , Pyrazoles/chemical synthesis , Substrate Specificity
15.
Cancer Res ; 74(20): 5700-10, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25145670

ABSTRACT

Tubulysins are highly toxic tubulin-targeting agents with a narrow therapeutic window that are interesting for application in antibody-drug conjugates (ADC). For full control over drug-antibody ratio (DAR) and the effect thereof on pharmacokinetics and tumor targeting, a dual-labeling approach was developed, wherein the drug, tubulysin variants, and the antibody, the anti-HER2 monoclonal antibody (mAb) trastuzumab, are radiolabeled. (131)I-radioiodination of two synthetic tubulysin A analogues, the less potent TUB-OH (IC50 > 100 nmol/L) and the potent TUB-OMOM (IC50, ~1 nmol/L), and their direct covalent conjugation to (89)Zr-trastuzumab were established. Radioiodination of tubulysins was 92% to 98% efficient and conversion to N-hydroxysuccinimide (NHS) esters more than 99%; esters were isolated in an overall yield of 68% ± 5% with radiochemical purity of more than 99.5%. Conjugation of (131)I-tubulysin-NHS esters to (89)Zr-trastuzumab was 45% to 55% efficient, resulting in ADCs with 96% to 98% radiochemical purity after size-exclusion chromatography. ADCs were evaluated for their tumor-targeting potential and antitumor effects in nude mice with tumors that were sensitive or resistant to trastuzumab, using ado-trastuzumab emtansine as a reference. ADCs appeared stable in vivo. An average DAR of 2 and 4 conferred pharmacokinetics and tumor-targeting behavior similar to parental trastuzumab. Efficacy studies using single-dose TUB-OMOM-trastuzumab (DAR 4) showed dose-dependent antitumor effects, including complete tumor eradications in trastuzumab-sensitive tumors in vivo. TUB-OMOM-trastuzumab (60 mg/kg) displayed efficacy similar to ado-trastuzumab emtansine (15 mg/kg) yet more effective than trastuzumab. Our findings illustrate the potential of synthetic tubulysins in ADCs for cancer treatment.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Drug Stability , Female , Humans , Maximum Tolerated Dose , Mice, Nude , Oligopeptides , Tissue Distribution , Trastuzumab , Xenograft Model Antitumor Assays
16.
Eur J Med Chem ; 82: 281-92, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24922543

ABSTRACT

A new series of 1H-benzofuro[3,2-c]pyrazole-3-carboxamides was synthesized. The novel compounds (15-24) were evaluated for their affinity to CB2 and CB1 cannabinoid receptors. The synthesis of the title compounds takes advantage of the acid-catalysed thermal cyclization of bicyclic hydrazone ethyl 2-(2-(2,4-dichlorophenyl)hydrazono)-2-(6-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate to tricyclic ethyl 1-(2,4-dichlorophenyl)-6-methyl-1H-benzofuro[3,2-c]pyrazol-3-carboxylate. All the obtained derivatives showed high affinity to CB2 receptors. Moreover, significant selectivity for CB2 over CB1 receptors was highlighted for lead derivatives amongst the novel series. The best binding profiles were determined for homologues bearing monocyclic and bicyclic monoterpenic substituents at the carbamoyl group at 3 position of the pyrazole ring (KiCB2 < 4 nM). In particular, the isopinocampheyl-substituted derivative 22 exhibited the highest selectivity for CB2 receptors with Ki values of 3.7 and 2398 nM for CB2 and CB1 receptors, respectively. Preliminary functional assays evidenced CB2 agonism behaviour for all the assayed novel derivatives.


Subject(s)
Benzofurans/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , HL-60 Cells , Humans , Ligands , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
17.
Eur J Pharmacol ; 729: 67-74, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24561047

ABSTRACT

Interstitial cystitis is a debilitating bladder inflammation disorder. To date, the understanding of the causes of interstitial cystitis remains largely fragmentary and there is no effective treatment available. Recent experimental results have shown a functional role of the endocannabinoid system in urinary bladder. In this study, we evaluated the anti-inflammatory effect of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of interstitial cystitis. Bladder inflammation was induced in mice by lipopolysaccharide (LPS) and whole bladders were removed 24h later. LPS induced a significant increase of the contractile amplitude in spontaneous activity and a hypersensitivity to exogenous acetylcholine-induced contraction of whole-isolated bladder. Next, we evaluated the anti-inflammatory activity of cannabinoidergic compounds by pretreating mice with CB1 or CB2 selective agonist compounds, respectively ACEA and JWH015. Interestingly, JWH015, but not ACEA, antagonized LPS-induced bladder inflammation. Additionally, anti-inflammatory activity was studied by evaluation, leukocytes mucosa infiltration, myeloperoxidase activity, and mRNA expression of pro-inflammatory interleukin (IL-1α and IL-1ß), tumor necrosis factor-alpha (TNF-α) and cannabinoid CB1 and CB2 receptors. JWH015 significantly decreased leukocytes infiltration in both submucosa and mucosa, as well as the myeloperoxydase activity, in LPS treated mice. JWH015 reduced mRNA expression of IL-1α, IL-1ß, and TNF-α. LPS treatment increased expression of bladder CB2 but not CB1 mRNA. Taken together, these findings strongly suggest that modulation of the cannabinoid CB2 receptors might be a promising therapeutic strategy for the treatment of bladder diseases and conditions characterized by inflammation, such as interstitial cystitis.


Subject(s)
Arachidonic Acids/therapeutic use , Cystitis, Interstitial/drug therapy , Disease Models, Animal , Indoles/therapeutic use , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Animals , Arachidonic Acids/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cystitis, Interstitial/chemically induced , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Indoles/pharmacology , Lipopolysaccharides/toxicity , Male , Mice , Organ Culture Techniques , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology
18.
PLoS One ; 8(12): e80012, 2013.
Article in English | MEDLINE | ID: mdl-24324589

ABSTRACT

Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.


Subject(s)
Ecosystem , Environmental Monitoring , Geologic Sediments/analysis , Models, Statistical , Atmosphere , Carbon/chemistry , Chlorophyll/chemistry , Chlorophyll A , France , Italy , Mediterranean Sea , Nitrogen/chemistry , Phosphorus/chemistry , Rivers/chemistry , Seasons , Seawater/chemistry
19.
Eur J Med Chem ; 69: 413-26, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24090913

ABSTRACT

Considering the interesting pharmacological profile of the delta (δ) selective opioid agonist compound SNC-80, conformationally constrained analogs containing two diazatricyclodecane ring systems in place of dimethylpiperazine core motif were synthesized. The compounds showed subnanomolar or low nanomolar δ opioid receptor binding affinity. Depending upon the substituents on the diazatricyclodecane ring, these compounds displayed varying selectivity for δ opioid receptor over µ and κ receptors. Amongst the novel compounds, 1Aa showed the more interesting biological profile, with higher δ affinity and selectivity compared to SNC-80. The δ receptor agonist profile and antinociceptive activity of 1Aa were confirmed using ex-vivo (isolated mouse vas deferens) and in vivo (tail flick) assays.


Subject(s)
Analgesics/pharmacology , Pain/drug therapy , Polycyclic Compounds/pharmacology , Receptors, Opioid, delta/agonists , Analgesics/administration & dosage , Analgesics/chemical synthesis , Animals , Dose-Response Relationship, Drug , Ligands , Mice , Molecular Structure , Pain Measurement , Polycyclic Compounds/administration & dosage , Polycyclic Compounds/chemical synthesis , Structure-Activity Relationship
20.
Pharmacol Biochem Behav ; 110: 137-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827651

ABSTRACT

For the past few decades membrane zinc metallopeptidases have been identified as important therapeutic targets in the control of pain. In particular, neutral endopeptidase (NEP) has been shown to play critical roles in the metabolism of the endogenous peptides Met- and Leu-enkephalins. In this study, we have evaluated the activity of a new fluorinated peptidase inhibitor NESS002ie in both in vitro and in vivo assays. NESS002ie has been compared to the peptidomimetic compound thiorphan and the previously reported NEP selective thiol inhibitor C20. The metallopeptidases inhibitory activity of NESS002ie was tested in vitro using a highly, sensitive, continuous, fluorometric, enzyme assay. Also, the analgesic propriety of NESS002ie, thiorphan and C20 have been evaluated in vivo, by intraplantar, intravenous and intrathecal administration, through nociception assays based on formalin test in mice. Metallopeptidases assays have shown an inhibitory potency of NESS002ie in the nanomolar range for NEP and angiotensin-converting enzyme (ACE). The new fluorinated inhibitor showed higher analgesic activity and bioavailability compared to thiorphan and C20 when administered by both intravenous and intrathecal injections. More significantly, intrathecal injection of NESS002ie reduced both the first and the second phases of the formalin biphasic pain response. In addition, naltrindole and naloxone reversed the analgesic effect of NESS002ie with a diverse profile. This study shows an improvement in relief of inflammation and pain, in vivo, using NESS002ie compared to reference compounds thiorphan and C20. This significant effect could be due to the replacement of isobutyl chain of the thiol C20 with the trifluoromethyl group.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Pain, Intractable/drug therapy , Protease Inhibitors/pharmacology , Sulfhydryl Compounds/pharmacology , Tyrosine/analogs & derivatives , Analgesics/therapeutic use , Animals , Formaldehyde/administration & dosage , Male , Mice , Naloxone/administration & dosage , Protease Inhibitors/therapeutic use , Sulfhydryl Compounds/therapeutic use , Tyrosine/pharmacology , Tyrosine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...