Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; : e0396723, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647345

ABSTRACT

Acylhydrazone (AH) derivatives represent a novel category of anti-fungal medications that exhibit potent activity against Sporothrix sp., both in vitro and in a murine model of sporotrichosis. In this study, we demonstrated the anti-fungal efficacy of the AH derivative D13 [4-bromo-N'-(3,5-dibromo-2-hydroxybenzylidene)-benzohydrazide] against both planktonic cells and biofilms formed by Sporothrix brasiliensis. In a clinical study, the effect of D13 was then tested in combination with itraconazole (ITC), with or without potassium iodide, in 10 cats with sporotrichosis refractory to the treatment of standard of care with ITC. Improvement or total clinical cure was achieved in five cases after 12 weeks of treatment. Minimal abnormal laboratory findings, e.g., elevation of alanine aminotransferase, were observed in four cats during the combination treatment and returned to normal level within a week after the treatment was ended. Although highly encouraging, a larger and randomized controlled study is required to evaluate the effectiveness and the safety of this new and exciting drug combination using ITC and D13 for the treatment of feline sporotrichosis. IMPORTANCE: This paper reports the first veterinary clinical study of an acylhydrazone anti-fungal (D13) combined with itraconazole against a dimorphic fungal infection, sporotrichosis, which is highly endemic in South America in animals and humans. Overall, the results show that the combination treatment was efficacious in ~50% of the infected animals. In addition, D13 was well tolerated during the course of the study. Thus, these results warrant the continuation of the research and development of this new class of anti-fungals.

2.
Bioorg Med Chem ; 100: 117610, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38306882

ABSTRACT

Clinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.e., aromatic N'-(salicylidene)carbohydrazides, exhibiting excellent antifungal activities against Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus and several other fungi both in vitro and in vivo. Building upon these highly promising results, 71 novel N'-(salicylidene)heteroarenecarbohydrazides 5 were designed, synthesized and their antifungal activities examined against fungi. Based on the SAR study, four highly promising lead compounds, i.e., 5.6a, 5.6b, 5.7b and 5.13a were identified, which exhibited excellent potency against C. neoformans, C. albicans and A. fumigatus, and displayed impressive time-kill profiles against C. neoformans with exceptionally high selectivity indices (SI ≥ 500). These four lead compounds also showed synergy with clinical antifungal drugs, fluconazole, caspofungin (CS) and amphotericin B against C. neoformans. For the SAR study, we also employed quantitative structure-activity relationship (QSAR) analysis by taking advantage of the accumulated data on a large number of aromatic and heteroaromatic N'-(salicylidene)carbohydrazides, which successfully led to rational design and selection of promising compounds for chemical synthesis and biological evaluation.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Hydrazines , Amphotericin B , Antifungal Agents/chemistry , Candida albicans , Fluconazole , Microbial Sensitivity Tests , Hydrazines/chemistry , Hydrazines/pharmacology
3.
Article in English | MEDLINE | ID: mdl-33468482

ABSTRACT

Candida auris is an emerging fatal fungal infection that has resulted in several outbreaks in hospitals and care facilities. Current treatment options are limited by the development of drug resistance. Identification of new pharmaceuticals to combat these drug-resistant infections will thus be required to overcome this unmet medical need. We have established a bioluminescent ATP-based assay to identify new compounds and potential drug combinations showing effective growth inhibition against multiple strains of multidrug-resistant Candida auris The assay is robust and suitable for assessing large compound collections by high-throughput screening (HTS). Utilizing this assay, we conducted a screen of 4,314 approved drugs and pharmacologically active compounds that yielded 25 compounds, including 6 novel anti-Candida auris compounds and 13 sets of potential two-drug combinations. Among the drug combinations, the serine palmitoyltransferase inhibitor myriocin demonstrated a combinational effect with flucytosine against all tested isolates during screening. This combinational effect was confirmed in 13 clinical isolates of Candida auris.


Subject(s)
Candida , Pharmaceutical Preparations , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Repositioning , Microbial Sensitivity Tests
4.
Article in English | MEDLINE | ID: mdl-32601165

ABSTRACT

The incidence of invasive fungal infections is rising due to the increase in susceptible populations. Current clinically available drugs have therapeutic limitations due to toxicity, a narrow spectrum of activity, and, more importantly, the consistent rise of fungal species that are intrinsically resistant or that develop resistance due to prolonged therapy. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. We previously reported a new class of potent antifungal compounds, acylhydrazones, that target the fungal sphingolipid pathway. Based upon our initial lead molecules, (E)-N'-(5-bromo-2-hydroxybenzylidene)-2-methylbenzohydrazide and D13, we performed a structure-activity relationship study, synthesizing ca. 300 new compounds. Of these, 5 compounds were identified to be the most promising for further studies, based on their broad-spectrum activity and low toxicity in mammalian cells lines. Among these top 5 lead compounds, we report here the impressive in vivo activity of 2,4-dibromo-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide (SB-AF-1002) in several models of systemic fungal infection. Our data show that SB-AF-1002 is efficacious and outperforms current standard-of-care drugs in models of invasive fungal infections, such as cryptococcosis, candidiasis, and aspergillosis. Specifically, animals treated with SB-AF-1002 not only survived the infection but also showed a clearing of fungal cells from key organs. Moreover, SB-AF-1002 was very effective in an aspergillosis model as a prophylactic therapy. SB-AF-1002 also displayed acceptable pharmacokinetic properties in mice, similar to those of the parent compound, D13. These results clearly indicate that our novel acylhydrazones constitute a new class of highly potent and efficacious antifungal agents which warrant further development for the treatment of invasive fungal infections.


Subject(s)
Aspergillosis , Candidiasis , Invasive Fungal Infections , Mycoses , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Candidiasis/drug therapy , Invasive Fungal Infections/drug therapy , Mice , Mycoses/drug therapy
5.
J Clin Invest ; 130(9): 4546-4560, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32484801

ABSTRACT

FTY720 is a treatment for relapsing remitting multiple sclerosis (MS). It is an analog of sphingosine-1-phosphate (S1P) and targets S1P receptors 1, 3, 4, and 5. Recent reports indicate an association between long-term exposure to FTY720 and cases of cryptococcal infection. Here, we studied the effect of FTY720 and its derivative, BAF312, which only target S1P receptors 1 and 5, in a mouse model of cryptococcal infection. We found that treatment with FTY720, but not with BAF312, led to decreased survival and increased organ burden in mouse cryptococcal granulomas. Both FTY720 and BAF312 caused a profound CD4+ and CD8+ T cell depletion in blood and lungs but only treatment with FTY720 led to cryptococcal reactivation. Treatment with FTY720, but not with BAF312, was associated with disorganization of macrophages and with M2 polarization at the granuloma site. In a cell system, FTY720 decreased phagocytosis and production of reactive oxygen species by macrophages, a phenotype recapitulated in the S1pr3-/- knockout macrophages. Our results suggest that FTY720 reactivates cryptococcosis from the granuloma through a S1P receptor 3-mediated mechanism and support the rationale for development of more-specific receptor modulators for therapeutic use of MS.


Subject(s)
Cryptococcosis/drug therapy , Cryptococcus neoformans/metabolism , Fingolimod Hydrochloride/pharmacology , Granuloma/drug therapy , Macrophages, Peritoneal/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Cell Line , Cryptococcosis/metabolism , Cryptococcosis/pathology , Female , Granuloma/metabolism , Granuloma/microbiology , Granuloma/pathology , Humans , Macrophages, Peritoneal/microbiology , Macrophages, Peritoneal/pathology , Male , Mice
6.
J Med Chem ; 62(17): 8249-8273, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31369263

ABSTRACT

Recently, the fungal sphingolipid glucosylceramide (GlcCer) synthesis has emerged as a highly promising new target for drug discovery of next-generation antifungal agents, and we found two aromatic acylhydrazones as effective inhibitors of GlcCer synthesis based on HTP screening. In the present work, we have designed libraries of new aromatic acylhydrazones, evaluated their antifungal activities (MIC80 and time-kill profile) against C. neoformans, and performed an extensive SAR study, which led to the identification of five promising lead compounds, exhibiting excellent fungicidal activities with very large selectivity index. Moreover, two compounds demonstrated broad spectrum antifungal activity against six other clinically relevant fungal strains. These five lead compounds were examined for their synergism/cooperativity with five clinical drugs against seven fungal strains, and very encouraging results were obtained; e.g., the combination of all five lead compounds with voriconazole exhibited either synergistic or additive effect to all seven fungal strains.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Candida/drug effects , Hydrazones/pharmacology , Sphingolipids/antagonists & inhibitors , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus fumigatus/metabolism , Candida/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Hydrazones/chemical synthesis , Hydrazones/chemistry , Microbial Sensitivity Tests , Molecular Structure , Sphingolipids/biosynthesis , Structure-Activity Relationship
7.
Front Microbiol ; 9: 1179, 2018.
Article in English | MEDLINE | ID: mdl-29922262

ABSTRACT

The yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS) modification of the highly discriminatory C. albicans MLST (multilocus sequence typing) method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type). Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to determine if, for some types of samples, routine testing for the presence of multiple strains is warranted. 100+1 NGS-MLST is effective for this purpose.

8.
Article in English | MEDLINE | ID: mdl-29507066

ABSTRACT

The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.


Subject(s)
Antifungal Agents/pharmacology , Hydrazones/pharmacology , Sphingolipids/biosynthesis , Animals , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Candida albicans/drug effects , Candida albicans/metabolism , Cryptococcosis/metabolism , Cryptococcosis/microbiology , Drug Resistance, Fungal , Humans , Microbial Sensitivity Tests
9.
Antimicrob Agents Chemother ; 60(1): 682-5, 2016 01.
Article in English | MEDLINE | ID: mdl-26552980

ABSTRACT

The aims of the study were to investigate the prevalence of azole resistance among Aspergillus fumigatus clinical isolates. A total of 533 clinical isolates that had been collected between 1995 and 2006, from 441 patients, were screened. No resistance was detected in isolates collected between 1995 and 1997. Starting in 1998, the resistance rate was 6.9%; a total of 24 patients (6.25%) harbored a resistant isolate. The TR34/L98H substitution was found in 21 of 30 tested isolates.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/epidemiology , Aspergillus fumigatus/genetics , Cytochrome P-450 Enzyme System/genetics , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Amino Acid Substitution , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/isolation & purification , Bacterial Typing Techniques , Cytochrome P-450 Enzyme System/metabolism , Epidemiological Monitoring , Fungal Proteins/metabolism , Gene Expression , Genotype , Humans , Italy/epidemiology , Itraconazole/pharmacology , Microbial Sensitivity Tests , Microsatellite Repeats , Mutation , Promoter Regions, Genetic , Triazoles/pharmacology , Voriconazole/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...