Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
BioDrugs ; 38(2): 177-203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38252341

ABSTRACT

The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.


Subject(s)
Metabolic Diseases , Oligonucleotides, Antisense , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/genetics , Oligonucleotides, Antisense/therapeutic use , United States
2.
Environ Res ; 238(Pt 1): 117123, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717803

ABSTRACT

Given the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes. Numerous efforts have been made to develop biosensors that use nucleic acid aptamer as the biorecognition element, which would avoid the abovementioned limitations. Incorporating nanomaterials (NMs) into aptamer-based biosensors (aptasensors) improves their sensitivity and specificity, opening exciting possibilities for various applications, such as bioanalysis of food and environmental samples. Over the last decade, nanomaterial-conjugated aptasensors have seen a steadily rising demand. To this end, the main goal of this study is to demonstrate the novelty in the design of nanomaterial-conjugated aptasensors and how they can be used to detect different pathogenic microbes in water and food. The intent of this paper is to evaluate the cutting-edge techniques that have appeared in nano-aptasensors throughout the past few years, such as manufacturing procedures, analytical credibility, and sensing mechanisms. Additionally, the fundamental performance parameters of aptasensing techniques (such as detection limits, and sensing ranges response) were also used to evaluate their practical applicability. Finally, it is anticipated that this study will inspire innovative ideas and techniques for the construction and use of aptasensors for monitoring pathogenic microorganisms in food, drinks, recreational water, and wastewater.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nanoparticles , Nanostructures , Biosensing Techniques/methods , Water
3.
ACS Omega ; 8(51): 48650-48661, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162739

ABSTRACT

In recent years, several splice switching antisense oligonucleotide (ASO)-based therapeutics have gained significant interest, and several candidates received approval for clinical use for treating rare diseases, in particular, Duchenne muscular dystrophy and spinal muscular atrophy. These ASOs are fully modified; in other words, they are composed of chemically modified nucleic acid analogues instead of natural RNA oligomers. This has significantly improved drug-like properties of these ASOs in terms of efficacy, stability, pharmacokinetics, and safety. Although chemical modifications of oligonucleotides have been discussed previously for numerous applications including nucleic acid aptamers, small interfering RNA, DNAzyme, and ASO, to the best of our knowledge, none of them have solely focused on the analogues that have been utilized for splice switching applications. To this end, we present here a comprehensive review of different modified nucleic acid analogues that have been explored for developing splice switching ASOs. In addition to the antisense chemistry, we also endeavor to provide a brief historical overview of the approved spice switching ASO drugs, including a list of drugs that have entered human clinical trials. We hope this work will inspire further investigations into expanding the potential of novel nucleic acid analogues for constructing splice switching ASOs.

4.
Nat Commun ; 13(1): 5347, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100596

ABSTRACT

Chronic inflammation is frequently associated with myeloproliferative neoplasms (MPN), but the role of inflammation in the pathogenesis of MPN remains unclear. Expression of the proinflammatory cytokine interleukin-1 (IL-1) is elevated in patients with MPN as well as in Jak2V617F knock-in mice. Here, we show that genetic deletion of IL-1 receptor 1 (IL-1R1) normalizes peripheral blood counts, reduces splenomegaly and ameliorates bone marrow fibrosis in homozygous Jak2V617F mouse model of myelofibrosis. Deletion of IL-1R1 also significantly reduces Jak2V617F mutant hematopoietic stem/progenitor cells. Exogenous administration of IL-1ß enhances myeloid cell expansion and accelerates the development of bone marrow fibrosis in heterozygous Jak2V617F mice. Furthermore, treatment with anti-IL-1R1 antibodies significantly reduces leukocytosis and splenomegaly, and ameliorates bone marrow fibrosis in homozygous Jak2V617F mice. Collectively, these results suggest that IL-1 signaling plays a pathogenic role in MPN disease progression, and targeting of IL-1R1 could be a useful strategy for the treatment of myelofibrosis.


Subject(s)
Janus Kinase 2/metabolism , Myeloproliferative Disorders , Neoplasms , Primary Myelofibrosis , Animals , Inflammation/genetics , Interleukin-1 , Janus Kinase 2/genetics , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Primary Myelofibrosis/genetics , Receptors, Interleukin-1 Type I/metabolism , Splenomegaly/genetics
5.
Proc Natl Acad Sci U S A ; 119(36): e2207956119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037350

ABSTRACT

Recent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues. TMOs are composed of a morpholino nucleoside joined by thiophosphoramidate internucleotide linkages. Unlike phosphorodiamidate morpholino oligomers (PMOs) that are currently used in various splice-switching ASO drugs, TMOs can be synthesized using solid-phase oligonucleotide synthesis methodologies. In this study, we synthesized various TMOs and evaluated their efficacy to induce exon skipping in a Duchenne muscular dystrophy (DMD) in vitro model using H2K mdx mouse myotubes. Our experiments demonstrated that TMOs can efficiently internalize and induce excellent exon 23 skipping potency compared with a conventional PMO control and other widely used nucleotide analogs, such as 2'-O-methyl and 2'-O-methoxyethyl ASOs. Notably, TMOs performed well at low concentrations (5-20 nM). Therefore, the dosages can be minimized, which may improve the drug safety profile. Based on the present study, we propose that TMOs represent a new, promising class of nucleic acid analogs for future oligonucleotide therapeutic development.


Subject(s)
Genetic Therapy , Morpholinos , Muscular Dystrophy, Duchenne , RNA Splicing , Animals , Disease Models, Animal , Genetic Therapy/methods , In Vitro Techniques , Mice , Mice, Inbred mdx , Morpholinos/genetics , Morpholinos/pharmacology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/genetics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , RNA, Messenger
6.
Leukemia ; 36(3): 746-759, 2022 03.
Article in English | MEDLINE | ID: mdl-34741118

ABSTRACT

Myelofibrosis (MF) is the deadliest form of myeloproliferative neoplasm (MPN). The JAK inhibitor Ruxolitinib can reduce constitutional symptoms but it does not substantially improve bone marrow fibrosis. Pim1 expression is significantly elevated in MPN/MF hematopoietic progenitors. Here, we show that genetic ablation of Pim1 blocked the development of myelofibrosis induced by Jak2V617F and MPLW515L. Pharmacologic inhibition of Pim1 with a second-generation Pim kinase inhibitor TP-3654 significantly reduced leukocytosis and splenomegaly, and attenuated bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of MF. Combined treatment of TP-3654 and Ruxolitinib resulted in greater reduction of spleen size, normalization of blood leukocyte counts and abrogation of bone marrow fibrosis in murine models of MF. TP-3654 treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, we show that TP-3654 treatment significantly inhibits mTORC1, MYC and TGF-ß signaling in Jak2V617F mutant hematopoietic cells and diminishes the expression of fibrotic markers in the bone marrow. Collectively, our results suggest that Pim1 plays an important role in the pathogenesis of MF, and inhibition of Pim1 with TP-3654 might be useful for treatment of MF.


Subject(s)
Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics , Animals , Cell Line , Disease Models, Animal , Gene Deletion , Humans , Janus Kinase 2/genetics , Mice , Mice, Knockout , Protein Kinase Inhibitors/therapeutic use
7.
Cancer Res ; 81(16): 4332-4345, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34145036

ABSTRACT

Myelofibrosis (myelofibrosis) is a deadly blood neoplasia with the worst prognosis among myeloproliferative neoplasms (MPN). The JAK2 inhibitors ruxolitinib and fedratinib have been approved for treatment of myelofibrosis, but they do not offer significant improvement of bone marrow fibrosis. CDK6 expression is significantly elevated in MPN/myelofibrosis hematopoietic progenitor cells. In this study, we investigated the efficacy of CDK4/6 inhibitor palbociclib alone or in combination with ruxolitinib in Jak2V617F and MPLW515L murine models of myelofibrosis. Treatment with palbociclib alone significantly reduced leukocytosis and splenomegaly and inhibited bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of myelofibrosis. Combined treatment of palbociclib and ruxolitinib resulted in normalization of peripheral blood leukocyte counts, marked reduction of spleen size, and abrogation of bone marrow fibrosis in murine models of myelofibrosis. Palbociclib treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, treatment with palbociclib or depletion of CDK6 inhibited Aurora kinase, NF-κB, and TGFß signaling pathways in Jak2V617F mutant hematopoietic cells and attenuated expression of fibrotic markers in the bone marrow. Overall, these data suggest that palbociclib in combination with ruxolitinib may have therapeutic potential for treatment of myelofibrosis and support the clinical investigation of this drug combination in patients with myelofibrosis. SIGNIFICANCE: These findings demonstrate that CDK6 inhibitor palbociclib in combination with ruxolitinib ameliorates myelofibrosis, suggesting this drug combination could be an effective therapeutic strategy against this devastating blood disorder.


Subject(s)
Cyclin-Dependent Kinase 6/metabolism , Nitriles/pharmacology , Primary Myelofibrosis/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrrolidines/pharmacology , Sulfonamides/pharmacology , Animals , Base Sequence , Bone Marrow/pathology , Bone Marrow Cells , Cell Line, Tumor , Disease Models, Animal , Fibrosis , Gene Expression Profiling , Hematopoiesis , Hematopoietic Stem Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Piperazines/pharmacology , Primary Myelofibrosis/therapy , Pyridines/pharmacology , Stem Cells
8.
Leukemia ; 35(8): 2382-2398, 2021 08.
Article in English | MEDLINE | ID: mdl-33414485

ABSTRACT

U2AF1 is involved in the recognition of the 3' splice site during pre-mRNA splicing. Mutations in U2AF1 are frequently observed in myelodysplastic syndromes. However, the role of wild-type U2AF1 in normal hematopoiesis has remained elusive. Using a novel conditional U2af1 knockout allele, we have found that deletion of U2af1 results in profound defects in hematopoiesis characterized by pancytopenia, ablation of hematopoietic stem/progenitor cells (HSPC) leading to bone marrow failure and early lethality in mice. U2af1 deletion impairs HSPC function and repopulation capacity. U2af1 deletion also causes increased DNA damage and reduced survival in hematopoietic progenitors. RNA sequencing analysis reveals significant alterations in the expression of genes related to HSC maintenance, cell proliferation, and DNA damage response-related pathways in U2af1-deficient HSPC. U2af1 deficiency also induces splicing alterations in genes important for HSPC function. This includes altered splicing and perturbed expression of Nfya and Pbx1 transcription factors in U2af1-deficient HSPC. Collectively, these results suggest an important role for U2af1 in the maintenance and function of HSPC in normal hematopoiesis. A better understanding of the normal function of U2AF1 in hematopoiesis is important for development of appropriate therapeutic approaches for U2AF1 mutant induced hematologic malignancies.


Subject(s)
Bone Marrow Failure Disorders/pathology , Hematopoiesis , Hematopoietic Stem Cells/pathology , Mutation , Splicing Factor U2AF/physiology , Animals , Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/metabolism , Cell Survival , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
RSC Adv ; 11(23): 14029-14035, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-35423918

ABSTRACT

Synthetic antisense oligonucleotides (ASOs) have emerged as one of the most promising therapeutic approaches. So far, nine ASO drugs have received approval for clinical use, and four of them are based on splice-switching principles demonstrating the impact of ASO-mediated splice modulation. Notably, three among them (Exondys 51, Vyondys 53 and Viltepso) are based on phosphorodiamidate morpholino (PMO) chemistry whereas Spinraza is based on 2'-O-methoxyethyl phosphorothioate (2'-MOE PS) chemistry. Although systemic delivery of PMOs has displayed a good safety profile even at high doses, the 2'-O-methyl phosphorothioate modified (2'-OMe PS) ASO drug candidate (drisapersen) failed due to safety issues. The potency of 2'-modified RNA for splice-switching needs to be further improved by novel design strategies for broad applicability. Towards this goal, in this study, we evaluated the potential of incorporating DNA segments at appropriate sites in 2'-OMe PS and 2'-MOE PS ASOs to induce exon skipping. For this purpose, a four-nucleotide DNA segment was systematically incorporated into a 20-mer 2'-OMe PS and 2'-MOE PS ASO designed to skip exon 23 in mdx mouse myotubes in vitro. Our results demonstrated that 2'-modified RNA PS ASOs containing four or less PS DNA nucleotides at the 3'-end yielded improved exon 23 skipping efficacy in line with fully modified ASO controls. Based on these results, we firmly believe that the present study opens new avenues towards designing splice modulating ASOs with limited chemical modifications for enhanced safety and therapeutic efficacy.

10.
ACS Omega ; 5(29): 18035-18039, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743177

ABSTRACT

Splice-modulating antisense therapy has shown tremendous potential in therapeutic development in recent years with four FDA-approved antisense drugs since 2016. However, an efficient and nontoxic antisense oligonucleotide (AO) delivery system still remains as a major obstacle in nucleic acid therapeutics field. Vitamin-E (α-tocopherol) is an essential dietary requirement for human body. This fat-soluble compound is one of the most important antioxidants which involves in numerous biological pathways. In this study, for the first time, we explored the scope of using α-tocopherol-conjugated bioresponsive AOs to induce splice modulation in mouse muscle myotubes in vitro. Our results showed that the bioresponsive construct efficiently internalized into the cell nucleus and induced exon 23 skipping in mdx mouse myotubes. Based on our exciting new results, we firmly believe that our findings could potentially benefit toward establishing a delivery approach to advance the field of splice-modulating AO therapy.

11.
Sci Rep ; 10(1): 6669, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32300155

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Sci Rep ; 9(1): 6078, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988454

ABSTRACT

Antisense oligonucleotide (AO)-mediated splice modulation has been established as a therapeutic approach for tackling genetic diseases. Recently, Exondys51, a drug that aims to correct splicing defects in the dystrophin gene was approved by the US Food and Drug Administration (FDA) for the treatment of Duchenne muscular dystrophy (DMD). However, Exondys51 has relied on phosphorodiamidate morpholino oligomer (PMO) chemistry which poses challenges in the cost of production and compatibility with conventional oligonucleotide synthesis procedures. One approach to overcome this problem is to construct the AO with alternative nucleic acid chemistries using solid-phase oligonucleotide synthesis via standard phosphoramidite chemistry. 2'-Fluoro (2'-F) is a potent RNA analogue that possesses high RNA binding affinity and resistance to nuclease degradation with good safety profile, and an approved drug Macugen containing 2'-F-modified pyrimidines was approved for the treatment of age-related macular degeneration (AMD). In the present study, we investigated the scope of 2'-F nucleotides to construct mixmer and gapmer exon skipping AOs with either 2'-O-methyl (2'-OMe) or locked nucleic acid (LNA) nucleotides on a phosphorothioate (PS) backbone, and evaluated their efficacy in inducing exon-skipping in mdx mouse myotubes in vitro. Our results showed that all AOs containing 2'-F nucleotides induced efficient exon-23 skipping, with LNA/2'-F chimeras achieving better efficiency than the AOs without LNA modification. In addition, LNA/2'-F chimeric AOs demonstrated higher exonuclease stability and lower cytotoxicity than the 2'-OMe/2'-F chimeras. Overall, our findings certainly expand the scope of constructing 2'-F modified AOs in splice modulation by incorporating 2'-OMe and LNA modifications.


Subject(s)
Muscle Fibers, Skeletal/drug effects , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/pharmacology , RNA Splicing/drug effects , Animals , Cells, Cultured , Chemistry Techniques, Synthetic/economics , Chemistry Techniques, Synthetic/methods , Chemistry, Pharmaceutical/economics , Chemistry, Pharmaceutical/methods , Drug Evaluation, Preclinical , Dystrophin/genetics , Dystrophin/metabolism , Exons/drug effects , Exons/genetics , Genetic Therapy/economics , Genetic Therapy/methods , Humans , Mice , Mice, Inbred mdx , Morpholinos/economics , Morpholinos/therapeutic use , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/chemistry , Oligonucleotides/economics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/economics , Oligonucleotides, Antisense/therapeutic use
13.
Mol Ther Nucleic Acids ; 14: 142-157, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30594893

ABSTRACT

Cancer is one of the leading causes of death worldwide, and conventional cancer therapies such as surgery, chemotherapy, and radiotherapy do not address the underlying molecular pathologies, leading to inadequate treatment and tumor recurrence. Angiogenic factors, such as EGF, PDGF, bFGF, TGF-ß, TGF-α, VEGF, endoglin, and angiopoietins, play important roles in regulating tumor development and metastasis, and they serve as potential targets for developing cancer therapeutics. Nucleic acid-based therapeutic strategies have received significant attention in the last two decades, and antisense oligonucleotide-mediated intervention is a prominent therapeutic approach for targeted manipulation of gene expression. Clinical benefits of antisense oligonucleotides have been recognized by the U.S. Food and Drug Administration, with full or conditional approval of Vitravene, Kynamro, Exondys51, and Spinraza. Herein we review the scope of antisense oligonucleotides that target angiogenic factors toward tackling solid cancers.

14.
RSC Adv ; 8(57): 32770-32774, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35547719

ABSTRACT

Accurate detection of single nucleotide polymorphisms (SNPs) is paramount for the appropriate therapeutic intervention of debilitating diseases associated with SNPs. However, in some cases current nucleic acid probes fail to detect allele-specific mutations, for example, human platelet antigens, HPA-15a (TCC) and HPA-15b (TAC) alleles associated with neonatal alloimmune thrombocytopenia. Towards this, it is necessary to develop a novel assay for detection of allele-specific mutations. In this study, we investigated the potential of unlocked nucleic acid (UNA)-modified primers in SNP detection utilising an enzymatic polymerisation-based approach. Our results of primer extension and asymmetric polymerase chain reaction by KOD XL DNA polymerase revealed that UNA-modified primers achieved excellent allele-specificity in discriminating the human platelet antigen DNA template, whereas the DNA control primers were not able to differentiate between the normal and mutant alleles, demonstrating the scope of this novel UNA-based enzymatic approach as a robust methodology for efficient detection of allele-specific mismatches. Although further evaluation is required for other disease conditions, we firmly believe that our findings offer a great promise for the diagnosis of neonatal alloimmune thrombocytopenia and other SNP-related diseases.

15.
Mol Ther Nucleic Acids ; 9: 155-161, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29246294

ABSTRACT

Locked nucleic acid is a prominent nucleic acid analog with unprecedented target binding affinity to cDNA and RNA oligonucleotides and shows remarkable stability against nuclease degradation. Incorporation of locked nucleic acid nucleotides into an antisense oligonucleotide (AO) sequence can reduce the length required without compromising the efficacy. In this study, we synthesized a series of systematically truncated locked nucleic acid-modified 2'-O-methyl AOs on a phosphorothioate (PS) backbone that were designed to induce skipping exon 23 from the dystrophin transcript in H-2Kb-tsA58 mdx mouse myotubes in vitro. The results clearly demonstrated that shorter AOs (16- to 14-mer) containing locked nucleic acid nucleotides efficiently induced dystrophin exon 23 skipping compared with the corresponding 2'-O-methyl AOs. Our remarkable findings contribute significantly to the existing knowledge about the designing of short LNA-modified oligonucleotides for exon-skipping applications, which will help reduce the cost of exon-skipping AOs and potential toxicities, particularly the 2'-OMe-based oligos, by further reducing the length of AOs.

16.
Molecules ; 22(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048375

ABSTRACT

Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson-Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG) linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3'-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.


Subject(s)
Aptamers, Nucleotide/chemical synthesis , Blood Coagulation/drug effects , Thrombin/metabolism , Antidotes/chemical synthesis , Antidotes/chemistry , Antidotes/pharmacology , Aptamers, Nucleotide/pharmacology , Binding Sites , Deoxyribonucleases/metabolism , Humans , Molecular Structure , Thrombin/chemistry
17.
Sci Rep ; 7(1): 1613, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487530

ABSTRACT

Integrin alpha-4 (ITGA4) is a validated therapeutic target for multiple sclerosis (MS) and Natalizumab, an antibody targeting ITGA4 is currently approved for treating MS. However, there are severe side effects related to this therapy. In this study, we report the development of a novel DNAzyme that can efficiently cleave the ITGA4 transcript. We designed a range of DNAzyme candidates across various exons of ITGA4. RNV143, a 30mer arm-loop-arm type DNAzyme efficiently cleaved 84% of the ITGA4 mRNA in human primary fibroblasts. RNV143 was then systematically modified by increasing the arm lengths on both sides of the DNAzymes by one, two and three nucleotides each, and incorporating chemical modifications such as inverted-dT, phosphorothioate backbone and LNA-nucleotides. Increasing the arm length of DNAzyme RNV143 did not improve the efficiency however, an inverted-dT modification provided the most resistance to 3' → 5' exonuclease compared to other modifications tested. Our results show that RNV143A could be a potential therapeutic nucleic acid drug molecule towards the treatment for MS.


Subject(s)
DNA, Catalytic/metabolism , Inflammation/genetics , Integrin alpha4/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Base Sequence , Endonucleases/metabolism , Enzyme Stability , Exons/genetics , Humans , Integrin alpha4/metabolism , Nucleotide Motifs/genetics , Phosphoric Diester Hydrolases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Molecules ; 21(11)2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27879669

ABSTRACT

In this study, we synthesised a morpholino nucleoside-uridine (MNA-U) phosphoramidite and evaluated the potential of a MNA-modified antisense oligonucleotide (AO) sequences to induce exon 23 skipping in mdx mouse myotubes in vitro towards extending the applicability of morpholino chemistry with other nucleotide monomers. We designed, synthesised, and compared exon skipping efficiencies of 20 mer MNA-modified 2'-O-methyl RNA mixmer AO on a phosphorothioate backbone (MNA/2'-OMePS) to the corresponding fully modified 2'-O-methyl RNA AO (2'-OMePS) as a control. Our results showed that the MNA/2'-OMePS efficiently induced exon 23 skipping. As expected, the 2'-OMePS AO control yielded efficient exon 23 skipping. Under the applied conditions, both the AOs showed minor products corresponding to exon 22/23 dual exon skipping in low yield. As these are very preliminary data, more detailed studies are necessary; however, based on the preliminary results, MNA nucleotides might be useful in constructing antisense oligonucleotides.


Subject(s)
Dystrophin/genetics , Morpholinos/chemistry , Myoblasts/drug effects , Organophosphorus Compounds/chemical synthesis , Uridine/analogs & derivatives , Animals , Cell Survival/drug effects , Cells, Cultured , Exons , Mice , Molecular Structure , Morpholinos/chemical synthesis , Morpholinos/pharmacology , Myoblasts/cytology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Uridine/chemical synthesis , Uridine/chemistry , Uridine/pharmacology
19.
Chem Commun (Camb) ; 52(92): 13467-13470, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27790668

ABSTRACT

Antisense oligonucleotide (AO) mediated exon skipping has been widely explored as a therapeutic strategy for several diseases, in particular, for rare genetic disorders such as Duchenne muscular dystrophy (DMD). To date, the potential of anhydrohexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA) and altritol nucleic acid (ANA) has not been explored in exon skipping. For the first time, in this study we designed and synthesised HNA, CeNA and ANA-modified 2'-O-methyl (2'-OMe) mixmer AOs on a phosphorothioate (PS) backbone, and evaluated their potential to induce exon 23 skipping in mdx mouse myotubes, as a model system. Our results clearly showed that all three AO candidates modified with HNA, CeNA and ANA could efficiently induce Dmd exon 23 skipping in vitro in parallel to the fully modified 2'-OMePS AO with reduced dual exon 22/23 skipping. In addition, they showed high nuclease resistance and no cytotoxicity compared to the 2'-OMePS AO, demonstrating the applicability of HNA, CeNA and ANA nucleotide-modified AOs in exon skipping.


Subject(s)
Cyclohexenes/chemistry , Exons/genetics , Nucleic Acids/chemistry , Oligonucleotides, Antisense/pharmacology , RNA/chemistry , Sugar Alcohols/chemistry , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Mice , Mice, Inbred mdx , Myoblasts/drug effects , Oligonucleotides, Antisense/chemistry , Structure-Activity Relationship
20.
Article in English | MEDLINE | ID: mdl-21936635

ABSTRACT

Prostate cancer (adenocarcinoma of the prostate) is the most widespread cancer in men. It causes significant suffering and mortality due to metastatic disease. The main therapy for metastatic prostate cancer (MPC) includes androgen manipulation, chemotherapy, and radiotherapy and/or radioisotopes. However, these therapeutic approaches are considered palliative at this stage, and their significant side effects can cause further decline in patients' quality of life and increase non-cancer-related morbidity/mortality. In this study, the authors have used the infusion of dimethyl sulfoxide-sodium bicarbonate (DMSO-SB) to treat 18 patients with MPC. The 90-day follow-up of the patients having undergone the proposed therapeutic regimen showed significant improvement in clinical symptoms, blood and biochemistry tests, and quality of life. There were no major side effects from the treatment. In searching for new and better methods for palliative treatment and pain relief, this study strongly suggested therapy with DMSO-SB infusions could provide a rational alternative to conventional treatment for patients with MPC.


Subject(s)
Dimethyl Sulfoxide/therapeutic use , Pain/drug therapy , Palliative Care/methods , Sodium Bicarbonate/therapeutic use , Adenocarcinoma , Aged , Dimethyl Sulfoxide/standards , Drug Combinations , Humans , Male , Middle Aged , Neoplasm Metastasis , Pain/etiology , Pain Measurement , Prostatic Neoplasms/complications , Prostatic Neoplasms/pathology , Quality of Life , Sodium Bicarbonate/standards , Treatment Outcome , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...