Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631430

ABSTRACT

Novel effluent treatment solutions for dangerous organic pollutants are crucial worldwide. In recent years, chemical reduction using noble metal-based nanocatalysts and NaBH4, a reducing agent, has become common practice for eliminating organic contaminants from aquatic environments. We suggest a straightforward approach to synthesizing magnetic cellulose nanocrystals (CNCs) modified with magnetite (Fe3O4) and silver nanoparticles (Ag NPs) as a catalyst for organic contamination removal. Significantly, the CNC surface was decorated with Ag NPs without using any reducing agents or stabilizers. PXRD, FE-SEM, TEM, EDX, VSM, BET, and zeta potential tests characterized the Ag/Fe3O4/CNC nanocomposite. The nanocomposite's catalytic activity was tested by eliminating 4-nitrophenol (4-NP) and the organic dyes methylene blue (MB) and methyl orange (MO) in an aqueous solution at 25 °C. The Ag/Fe3O4/CNC nanocomposite reduced 4-NP and decolored these hazardous organic dyes in a short time (2 to 5 min) using a tiny amount of catalyst (2.5 mg for 4-NP and 15 mg for MO and MB). The magnetic catalyst was removed and reused three times without losing catalytic activity. This work shows that the Ag/Fe3O4/CNC nanocomposite can chemically reduce harmful pollutants in effluent for environmental applications.

SELECTION OF CITATIONS
SEARCH DETAIL