Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(5): 3963-3973, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38221854

ABSTRACT

The CO2 conversion to methanol (CO2-to-CH3OH conversion) is a promising way to resolve greenhouse gas emissions and global energy shortage. Many catalysts are of interest in improving the efficiency of the conversion reaction. The PdCo alloy is a potential catalyst, but no research is available to clarify the CO2-to-CH3OH reaction mechanism of this alloy. Here, using density functional theory combined with the thermodynamic model, we elucidated the reaction mechanism of the CO2-to-CH3OH conversion on the Pd-skin/PdCo alloy catalyst via thermo- and electro-catalytic processes. The adsorption of CO2-to-CH3OH intermediates with key stable intermediates such as HCOO, COOH, and CO was explored. Free-energy diagrams for the CO2-to-CH3OH conversion were constructed. We found that the formate pathway is the most favorable one. The charge transfer plays a crucial role in the substrate-adsorbate interaction via electronic structure analysis. This work provides valuable guidance for designing Pd-based catalysts for the CO2-to-CH3OH conversion.

2.
RSC Adv ; 13(51): 36144-36157, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090092

ABSTRACT

Gas sensors are used to detect gas components in human breath to diagnose diseases, such as cancers. However, choosing suitable two-dimensional materials for gas sensors is a challenge. Germanene can be a good candidate because of its outstanding electronic and structural properties. Based on the density functional theory calculations with various schemes, such as PBE + vdW-DF2, HSE06 + PBE, and HSE06 + vdW-DF2, we elucidated the structural and electronic properties of germanene substrates (perfect, vacancy-1, and vacancy-2) while adsorbing hepatocellular carcinoma-related volatile organic compounds (VOCs), i.e., acetone, 1,4-pentadiene, methylene chloride, phenol, and allyl methyl sulfide. These gases have been selected for investigation because of their most frequent occurence in diagnosing the disease. We found that vacancy substrates enhanced the adsorption strength of the VOCs compared to the perfect one, where the phenol adsorbed most strongly and exhibited the most profound influence on the structural deformation of the substrates over the other VOCs. Besides, the adsorbed VOCs significantly modified the energy bandgap of the considered germanene substrates. In particular, the gases, except allyl methyl sulfide, vanished the bandgap of the vacancy-1 germanene and converted this substrate from a semiconductor to a metal, while they widened the bandgap of the vacancy-2 structure compared to the isolated case. Therefore, the perfect and vacancy-2 germanene sheets could maintain their semiconducting state upon gas adsorption, implying that these substrates may be suitable candidates for gas sensing applications. The nature of the interaction between the VOCs and the germanene substrates is a physical adsorption with a weak charge exchange, which mainly comes from the contribution of the pz orbital of the VOCs and the pz orbital of Ge.

3.
RSC Adv ; 13(23): 15606-15615, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37228675

ABSTRACT

CO2 capture is a crucial strategy to mitigate global warming and protect a sustainable environment. Metal-organic frameworks with large surface area, high flexibility, and reversible adsorption and desorption of gases are good candidates for CO2 capture. Among the synthesized metal-organic frameworks, the MIL-88 series has attracted our attention due to their excellent stability. However, a systematic investigation of CO2 capture in the MIL-88 series with different organic linkers is not available. Therefore, we clarified the topic via two sections: (1) elucidate physical insights into the CO2@MIL-88 interaction by van der Waals-dispersion correction density functional theory calculations, and (2) quantitatively study the CO2 capture capacity by grand canonical Monte Carlo simulations. We found that the 1πg, 2σu/1πu, and 2σg peaks of the CO2 molecule and the C and O p orbitals of the MIL-88 series are the predominant contributors to the CO2@MIL-88 interaction. The MIL-88 series, i.e., MIL-88A, B, C, and D, has the same metal oxide node but different organic linkers: fumarate (MIL-88A), 1,4-benzene-dicarboxylate (MIL-88B), 2,6-naphthalene-dicarboxylate (MIL-88C), and 4,4'-biphenyl-dicarboxylate (MIL-88D). The results exhibited that fumarate should be the best replacement for both the gravimetric and volumetric CO2 uptakes. We also pointed out a proportional relationship between the capture capacities with electronic properties and other parameters.

4.
RSC Adv ; 12(37): 24146-24155, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36128543

ABSTRACT

Researchers investigated the modification of the LaAlO3/SrTiO3 interface with Au overlayers and nanoparticles, which led to the change of various physical properties. However, no research is available to elucidate insights into the interaction of Au with the LaAlO3/SrTiO3 substrate. Therefore, this study is devoted to solving the question using density functional theory calculations. We also studied the optical properties of the LaAlO3/SrTiO3 system before and after the Au adsorption. We found that an additional optical peak occurs with significant intensity in the wavelength region of 600 nm to 1200 nm depending on the LaAlO3 film thickness. This peak is attributed to the increase in the hole states in the presence of Au adsorption with the increase in the LaAlO3 film thickness.

5.
Sci Rep ; 11(1): 14374, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34257371

ABSTRACT

Using density functional theory (DFT), we performed theoretical investigation on structural, energetic, electronic, and magnetic properties of pure armchair silicene nanoribbons with edges terminated with hydrogen atoms (ASiNRs:H), and the absorptions of silicon (Si) atom(s) on the top of ASiNRs:H. The calculated results show that Si atoms prefer to adsorb on the top site of ASiNRs:H and form the single- and/or di-adatom defects depending on the numbers. Si absorption defect(s) change electronic and magnetic properties of ASiNRs:H. Depending on the adsorption site the band gap of ASiNRs:H can be larger or smaller. The largest band gap of 1 Si atom adsorption is 0.64 eV at site 3, the adsorption of 2 Si atoms has the largest band gap of 0.44 eV at site 1-D, while the adsorption at sites5 and 1-E turn into metallic. The formation energies of Si adsorption show that adatom defects in ASiNRs:H are more preferable than pure ASiNRs:H with silicon atom(s). 1 Si adsorption prefers to be added on the top site of a Si atom and form a single-adatom defect, while Si di-adatom defect has lower formation energy than the single-adatom and the most energetically favorable adsorption is at site 1-F. Si adsorption atoms break spin-degeneracy of ASiNRs:H lead to di-adatom defect at site 1-G has the highest spin moment. Our results suggest new ways to engineer the band gap and magnetic properties silicene materials.

6.
RSC Adv ; 11(14): 8033-8041, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-35423300

ABSTRACT

Monolayer MoS2 has attracted much attention due to its high on/off current ratio, transparency, and suitability for optoelectronic devices. Surface doping by molecular adsorption has proven to be an effective method to facilitate the usage of MoS2. However, there are no works available to systematically clarify the effects of the adsorption of F4TCNQ, PTCDA, and tetracene on the electronic and optical properties of the material. Therefore, this work elucidated the problem by using density functional theory calculations. We found that the adsorption of F4TCNQ and PTCDA turns MoS2 into a p-type semiconductor, while the tetracene converts MoS2 into an n-type semiconductor. The occurrence of a new energy level in the conduction band for F4TCNQ and PTCDA and the valence band for tetracene reduces the bandgap of the monolayer MoS2. Besides, the MoS2/F4TCNQ and MoS2/PTCDA systems exhibit an auxiliary optical peak at the long wavelengths of 950 and 850 nm, respectively. Contrastingly, the MoS2/tetracene modifies the optical spectrum of the monolayer MoS2 only in the ultraviolet region. The findings are in good agreement with the experiments.

7.
RSC Adv ; 10(8): 4201-4210, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-35495219

ABSTRACT

MoS2 is one of the well-known transition metal dichalcogenides. The moderate bandgap of monolayer MoS2 is fascinating for the new generation of optoelectronic devices. Unfortunately, MoS2 is sensitive to gases in the environment causing its original electronic properties to be modified unexpectedly. This problem has been solved by coating MoS2 with polymers such as polyethyleneimine (PEI). Furthermore, the application of pressure is also an effective method to modify the physical properties of MoS2. However, the effects of polyethyleneimine and pressure on the electronic and optical properties of monolayer MoS2 remain unknown. Therefore, we elucidated this matter by using density functional theory calculations. The results showed that the adsorption of the PEI molecule significantly reduces the width of the direct bandgap of the monolayer MoS2 to 0.55 eV because of the occurrence of the new energy levels in the bandgap region due to the contribution of the N-2p z state of the PEI molecule. Remarkably, the transition from semiconductor to metal of the monolayer MoS2 and the MoS2/PEI system occurs at the tensile pressure of 24.95 and 21.79 GPa, respectively. The bandgap of these systems approaches 0 eV at the corresponding pressures. Importantly, new peaks in the optical spectrum of the clean MoS2 and MoS2/PEI appear in the ultraviolet region under compressive pressures and the infrared region under tensile strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...