Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Psychiatr Pract ; 30(2): 95-103, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38526397

ABSTRACT

Approaching mental health issues in the Vietnamese community is challenging due to the distinct cultural practices, the stigma of mental illness, and the language barrier. These complexities are compounded by additional stressors experienced by many Vietnamese Americans stemming from war trauma and the demands of immigration. In this article, the authors discuss the implications that Vietnamese cultural practices have on the perception of mental health in Vietnamese American communities. Specifically, the discussion encompasses mood disorders, particularly depression, and schizophrenia, 2 prevalent mental health conditions that often intersect with cultural nuances. Shedding light on this often-overlooked aspect, the authors provide insight into understanding the specific challenges Vietnamese Americans with depression and schizophrenia face. At the end of this article, a helpful table of commonly used mental health terms, their Vietnamese translations, and explanations in Vietnamese are presented. Beyond linguistics, the article extends its guidance to mental health providers seeking to engage in productive discussion about mental health with their patients. By offering practical tips tailored to cultural context, the article aims to foster a more inclusive approach to mental health in Vietnamese American communities.


Subject(s)
Asian , Mental Disorders , Humans , Mental Health , Mood Disorders , United States , Vietnam/ethnology
2.
PLoS One ; 19(2): e0299579, 2024.
Article in English | MEDLINE | ID: mdl-38412168

ABSTRACT

Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.


Subject(s)
Mechanotransduction, Cellular , Tissue Scaffolds , Osteogenesis , Biocompatible Materials/pharmacology , Polyesters/pharmacology , Lactic Acid/pharmacology , Tissue Engineering
3.
Nat Commun ; 14(1): 6257, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37802985

ABSTRACT

Osteoarthritis affects millions of people worldwide but current treatments using analgesics or anti-inflammatory drugs only alleviate symptoms of this disease. Here, we present an injectable, biodegradable piezoelectric hydrogel, made of short electrospun poly-L-lactic acid nanofibers embedded inside a collagen matrix, which can be injected into the joints and self-produce localized electrical cues under ultrasound activation to drive cartilage healing. In vitro, data shows that the piezoelectric hydrogel with ultrasound can enhance cell migration and induce stem cells to secrete TGF-ß1, which promotes chondrogenesis. In vivo, the rabbits with osteochondral critical-size defects receiving the ultrasound-activated piezoelectric hydrogel show increased subchondral bone formation, improved hyaline-cartilage structure, and good mechanical properties, close to healthy native cartilage. This piezoelectric hydrogel is not only useful for cartilage healing but also potentially applicable to other tissue regeneration, offering a significant impact on the field of regenerative tissue engineering.


Subject(s)
Cartilage, Articular , Hydrogels , Humans , Animals , Rabbits , Hydrogels/chemistry , Cartilage , Collagen/chemistry , Wound Healing , Cells, Cultured , Chondrogenesis , Tissue Engineering , Tissue Scaffolds/chemistry
4.
Biomaterials ; 301: 122270, 2023 10.
Article in English | MEDLINE | ID: mdl-37591188

ABSTRACT

Electrical stimulation (ES) induces wound healing and skin regeneration. Combining ES with the tissue-engineering approach, which relies on biomaterials to construct a replacement tissue graft, could offer a self-stimulated scaffold to heal skin-wounds without using potentially toxic growth factors and exogenous cells. Unfortunately, current ES technologies are either ineffective (external stimulations) or unsafe (implanted electrical devices using toxic batteries). Hence, we propose a novel wound-healing strategy that integrates ES with tissue engineering techniques by utilizing a biodegradable self-charged piezoelectric PLLA (Poly (l-lactic acid)) nanofiber matrix. This unique, safe, and stable piezoelectric scaffold can be activated by an external ultrasound (US) to produce well-controlled surface-charges with different polarities, thus serving multiple functions to suppress bacterial growth (negative surface charge) and promote skin regeneration (positive surface charge) at the same time. We demonstrate that the scaffold activated by low intensity/low frequency US can facilitate the proliferation of fibroblast/epithelial cells, enhance expression of genes (collagen I, III, and fibronectin) typical for the wound healing process, and suppress the growth of S. aureus and P. aeruginosa bacteria in vitro simultaneously. This approach induces rapid skin regeneration in a critical-sized skin wound mouse model in vivo. The piezoelectric PLLA skin scaffold thus assumes the role of a multi-tasking, biodegradable, battery-free electrical stimulator which is important for skin-wound healing and bacterial infection prevention simultaneuosly.


Subject(s)
Skin , Staphylococcus aureus , Animals , Mice , Wound Healing , Biocompatible Materials , Collagen Type I
5.
Sci Adv ; 9(24): eadg6075, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315129

ABSTRACT

Amino acid crystals are an attractive piezoelectric material as they have an ultrahigh piezoelectric coefficient and have an appealing safety profile for medical implant applications. Unfortunately, solvent-cast films made from glycine crystals are brittle, quickly dissolve in body fluid, and lack crystal orientation control, reducing the overall piezoelectric effect. Here, we present a material processing strategy to create biodegradable, flexible, and piezoelectric nanofibers of glycine crystals embedded inside polycaprolactone (PCL). The glycine-PCL nanofiber film exhibits stable piezoelectric performance with a high ultrasound output of 334 kPa [under 0.15 voltage root-mean-square (Vrms)], which outperforms the state-of-the-art biodegradable transducers. We use this material to fabricate a biodegradable ultrasound transducer for facilitating the delivery of chemotherapeutic drug to the brain. The device remarkably enhances the animal survival time (twofold) in mice-bearing orthotopic glioblastoma models. The piezoelectric glycine-PCL presented here could offer an excellent platform not only for glioblastoma therapy but also for developing medical implantation fields.


Subject(s)
Glioblastoma , Nanofibers , Animals , Mice , Amino Acids , Glycine , Brain
6.
Mol Pharm ; 20(5): 2352-2361, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37014806

ABSTRACT

Current antibody (Ab) therapies require development of stable formulations and an optimal delivery system. Here, we present a new strategy to create a single-administration long-lasting Ab-delivery microarray (MA) patch, which can carry high doses of thermally stabilized Abs. The MA fabricated by an additive three-dimensional manufacturing technology can be fully embedded into the skin via a single application to deliver doses of Abs at multiple programmable time points, thus sustaining Ab concentrations in systemic circulation. We developed an MA formulation that stabilized and delivered human immunoglobulins (hIg) in a time-controlled manner while maintaining their structure and functionality. As an example, the b12 Ab─a broadly neutralizing Ab against HIV-1─maintained antiviral activity in vitro after MA manufacturing and heat exposure. Pharmacokinetic studies of MA patch-delivered hIg in rats successfully provided a proof of concept for concurrent and time-delayed Ab delivery. These MA patches codeliver different Abs, providing a tool for expanded protection against viral infections or combination HIV therapy and prevention.


Subject(s)
Antibodies , HIV Infections , Humans , Rats , Animals , Skin , HIV Infections/drug therapy , HIV Infections/prevention & control
7.
Phys Rev Lett ; 128(4): 040402, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35148126

ABSTRACT

Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios that cannot be modeled by the natural real-number analog of standard quantum theory. Here, we tailor such tests for implementation in state-of-the-art photonic systems. We experimentally demonstrate quantum correlations in a network of three parties and two independent EPR sources that violate the constraints of real quantum theory by over 4.5 standard deviations, hence disproving real quantum theory as a universal physical theory.

8.
Sci Transl Med ; 14(627): eabi7282, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35020409

ABSTRACT

More than 32.5 million American adults suffer from osteoarthritis, and current treatments including pain medicines and anti-inflammatory drugs only alleviate symptoms but do not cure the disease. Here, we have demonstrated that a biodegradable piezoelectric poly(L-lactic acid) (PLLA) nanofiber scaffold under applied force or joint load could act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. The PLLA scaffold under applied force or joint load generated a controllable piezoelectric charge, which promoted extracellular protein adsorption, facilitated cell migration or recruitment, induced endogenous TGF-ß via calcium signaling pathway, and improved chondrogenesis and cartilage regeneration both in vitro and in vivo. Rabbits with critical-sized osteochondral defects receiving the piezoelectric scaffold and exercise treatment experienced hyaline-cartilage regeneration and completely healed cartilage with abundant chondrocytes and type II collagen after 1 to 2 months of exercise (2 to 3 months after surgery including 1 month of recovery before exercise), whereas rabbits treated with nonpiezoelectric scaffold and exercise treatment had unfilled defect and limited healing. The approach of combining biodegradable piezoelectric tissue scaffolds with controlled mechanical activation (via physical exercise) may therefore be useful for the treatment of osteoarthritis and is potentially applicable to regenerating other injured tissues.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cartilage , Chondrogenesis/physiology , Osteoarthritis/therapy , Rabbits , Regeneration/physiology , Tissue Engineering , Tissue Scaffolds
9.
Nat Prod Res ; 36(15): 4026-4030, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33729063

ABSTRACT

Bioactivity-guided isolation of the CHCl3-soluble fraction of the stems of Salacia chinensis L. (Celastraceae) was carried out to obtain a new 7',9-epoxylignan (1) and three 7,9':7',9-diepoxylignans (2-4). The absolute configuration of 1 was elucidated based on NMR and ECD spectroscopic data interpretation. All isolated lignans showed intermediate α-glucosidase inhibitory activity with the IC50 values ranging from 28.5 to 85.6 µM.


Subject(s)
Celastraceae , Lignans , Salacia , Lignans/pharmacology , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Salacia/chemistry
10.
CNS Neurol Disord Drug Targets ; 21(7): 621-630, 2022.
Article in English | MEDLINE | ID: mdl-34414874

ABSTRACT

AIMS: To investigate the efficacy and safety of Cerebrolysin and Cerebrolysin plus nootropics in the routine treatment of patients with acute ischemic stroke (AIS). BACKGROUND: Acute ischemic stroke (AIS) is a leading cause of disability with unmet treatment needs lacking effective drug therapy. Multimodal drugs modulating stroke pathophysiology as Cerebrolysin constitute a good therapeutic option. OBJECTIVE: In this study, we assessed the effects of Cerebrolysin and Cerebrolysin plus nootropics, in comparison with other nootropic drugs alone, on functional, neurological and cognitive recovery of patients with AIS in Vietnam. METHODS: This non-interventional, controlled, open-label, prospective and multicenter study included 398 AIS patients (234 males) treated with Cerebrolysin (n=190; 20 i.v. infusions of 10 ml), other nootropics (comparator group; n=86), or a combination of both (n=122). The study primary endpoint was the modified Ranking Scale (mRS) score on day 90. Secondary endpoints included study-period change in NIHSS score; percentage of well-recovered (mRS 0-2) patients, the proportion of good NIHSS response (≥6 points) cases, and MoCA scores at day 90; and safety indicators. RESULTS: Compared with other nootropics, both Cerebrolysin and combined therapy induced significant improvements (p<0.001) in: Functional recovery (mRS scores); percentage of well-recovered patients (Cerebrolysin: 81.6%; combination: 93.4%; comparator: 43.0%); neurological recovery (study- period NIHSS change); proportion of good NIHSS responders (Cerebrolysin: 77.5%; combination: 92.5%; comparator: 47.6%); and MoCA scores (Cerebrolysin: 23.3±4.8; combination: 23.7±4.1; comparator: 15.9±7.7). Compared to Cerebrolysin, combined therapy improved (p<0.01) mRS outcomes and NIHSS change, but not MoCA scores, in moderate-severe stroke (NIHSS>11) cases only. No drug-related adverse events were reported. CONCLUSION: Cerebrolysin alone or combined with other nootropics was effective and safe in routine AIS treatment, during both acute and recovery phases, which supports its use in daily clinical practice. Others: According to the results of this multicenter study, the importance of reducing differences in the treatment regimens of AIS in Vietnam should be further emphasized.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Nootropic Agents , Stroke , Amino Acids , Brain Ischemia/complications , Brain Ischemia/drug therapy , Female , Humans , Male , Neuroprotective Agents/therapeutic use , Nootropic Agents/therapeutic use , Pregnancy , Prospective Studies , Stroke/complications , Stroke/drug therapy , Treatment Outcome , Vietnam
11.
Adv Mater Technol ; : 2200905, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36714215

ABSTRACT

The necessity for multiple injections and cold-chain storage has contributed to suboptimal vaccine utilization, especially in pandemic situations. Thermally-stable and single-administration vaccines hold a great potential to revolutionize the global immunization process. Here, a new approach to thermally stabilize protein-based antigens is presented and a new high-throughput antigen-loading process is devised to create a single-administration, pulsatile-release microneedle (MN) patch which can deliver a recombinant SARS-CoV-2 S1-RBD protein-a model for the COVID-19 vaccine. Nearly 100% of the protein antigen could be stabilized at temperatures up to 100 °C for at least 1 h and at an average human body temperature (37 °C) for up to 4 months. Arrays of the stabilized S1-RBD formulations can be loaded into the MN shells via a single-alignment assembly step. The fabricated MNs are administered at a single time into the skin of rats and induce antibody response which could neutralize authentic SARS-CoV-2 viruses, providing similar immunogenic effect to that induced by multiple bolus injections of the same antigen stored in conventional cold-chain conditions. The MN system presented herein could offer the key solution to global immunization campaigns by avoiding low patient compliance, the requirement for cold-chain storage, and the need for multiple booster injections.

12.
Nature ; 600(7890): 625-629, 2021 12.
Article in English | MEDLINE | ID: mdl-34912122

ABSTRACT

Although complex numbers are essential in mathematics, they are not needed to describe physical experiments, as those are expressed in terms of probabilities, hence real numbers. Physics, however, aims to explain, rather than describe, experiments through theories. Although most theories of physics are based on real numbers, quantum theory was the first to be formulated in terms of operators acting on complex Hilbert spaces1,2. This has puzzled countless physicists, including the fathers of the theory, for whom a real version of quantum theory, in terms of real operators, seemed much more natural3. In fact, previous studies have shown that such a 'real quantum theory' can reproduce the outcomes of any multipartite experiment, as long as the parts share arbitrary real quantum states4. Here we investigate whether complex numbers are actually needed in the quantum formalism. We show this to be case by proving that real and complex Hilbert-space formulations of quantum theory make different predictions in network scenarios comprising independent states and measurements. This allows us to devise a Bell-like experiment, the successful realization of which would disprove real quantum theory, in the same way as standard Bell experiments disproved local physics.

13.
Front Bioeng Biotechnol ; 9: 795300, 2021.
Article in English | MEDLINE | ID: mdl-35087799

ABSTRACT

Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.

14.
Soft Matter ; 16(42): 9769-9779, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33000857

ABSTRACT

Understanding and manipulating the miscibility of donor and acceptor components in the active layer morphology is important to optimize the longevity of organic photovoltaic devices and control power conversion efficiency. In pursuit of this goal, a "porphyrin-capped" poly(3-hexylthiophene) was synthesized to take advantage of strong porphyrin:fullerene intermolecular interactions that modify fullerene miscibility in the active layer. End-functionalized poly(3-hexylthiophene) was synthesized via catalyst transfer polymerization and subsequently functionalized with a porphyrin moiety via post-polymerization modification. UV-vis spectroscopy and X-ray diffraction measurements show that the porphyrin-functionalized poly(3-hexylthiophene) exhibits increased intermolecular interactions with phenyl-C61-butyric acid methyl ester (PCBM) in the solid state compared to unfunctionalized poly(3-hexylthiophene) without sacrificing microstructure ordering that facilitates optimal charge transport properties. Additionally, differential scanning calorimetry revealed porphyrin-functionalized poly(3-hexylthiophene) crystallization decreased only slightly (1-6%) compared to unfunctionalized poly(3-hexylthiophenes) while increasing fullerene miscibility by 55%. Preliminary organic photovoltaic device results indicate device power conversion efficiency is sensitive to additive loading levels, as evident by a slight increase in power conversion efficiency at low additive loading levels but a continuous decrease with increased loading levels. While the increased fullerene miscibility is not balanced with significant increases in power conversion efficiency, this approach suggests that integrating non-bonded interaction potentials is a useful pathway for manipulating the morphology of the bulk heterojunction thin film, and porphyrin-functionalized poly(3-hexylthiophenes) may be useful additives in that regard.

15.
Nano Energy ; 762020 Oct.
Article in English | MEDLINE | ID: mdl-38074984

ABSTRACT

Electrical stimulation (ES) has been shown to induce and enhance bone regeneration. By combining this treatment with tissue-engineering approaches (which rely on biomaterial scaffolds to construct artificial tissues), a replacement bone-graft with strong regenerative properties can be achieved while avoiding the use of potentially toxic levels of growth factors. Unfortunately, there is currently a lack of safe and effective methods to induce electrical cues directly on cells/tissues grown on the biomaterial scaffolds. Here, we present a novel bone regeneration method which hybridizes ES and tissue-engineering approaches by employing a biodegradable piezoelectric PLLA (Poly(L-lactic acid)) nanofiber scaffold which, together with externally-controlled ultrasound (US), can generate surface-charges to drive bone regeneration. We demonstrate that the approach of using the piezoelectric scaffold and US can enhance osteogenic differentiation of different stem cells in vitro, and induce bone growth in a critical-sized calvarial defect in vivo. The biodegradable piezoelectric scaffold with applied US could significantly impact the field of tissue engineering by offering a novel biodegradable, battery-free and remotely-controlled electrical stimulator.

16.
Proc Natl Acad Sci U S A ; 117(1): 214-220, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871178

ABSTRACT

Piezoelectric materials, a type of "smart" material that generates electricity while deforming and vice versa, have been used extensively for many important implantable medical devices such as sensors, transducers, and actuators. However, commonly utilized piezoelectric materials are either toxic or nondegradable. Thus, implanted devices employing these materials raise a significant concern in terms of safety issues and often require an invasive removal surgery, which can damage directly interfaced tissues/organs. Here, we present a strategy for materials processing, device assembly, and electronic integration to 1) create biodegradable and biocompatible piezoelectric PLLA [poly(l-lactic acid)] nanofibers with a highly controllable, efficient, and stable piezoelectric performance, and 2) demonstrate device applications of this nanomaterial, including a highly sensitive biodegradable pressure sensor for monitoring vital physiological pressures and a biodegradable ultrasonic transducer for blood-brain barrier opening that can be used to facilitate the delivery of drugs into the brain. These significant applications, which have not been achieved so far by conventional piezoelectric materials and bulk piezoelectric PLLA, demonstrate the PLLA nanofibers as a powerful material platform that offers a profound impact on various medical fields including drug delivery, tissue engineering, and implanted medical devices.


Subject(s)
Absorbable Implants , Micro-Electrical-Mechanical Systems/instrumentation , Nanofibers/chemistry , Transducers , Drug Delivery Systems , Electricity , Electronics , Equipment Design , Monitoring, Physiologic/instrumentation , Pressure , Prostheses and Implants , Tissue Engineering , Ultrasonics
17.
J Infect ; 79(2): 115-122, 2019 08.
Article in English | MEDLINE | ID: mdl-31125639

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) is an increasing problem worldwide, but particularly problematic in low- and middle-income countries (LMIC) due to limitations of resources for surveillance of CRE and infection prevention and control (IPC). METHODS: A point prevalence survey (PPS) with screening for colonisation with CRE was conducted on 2233 patients admitted to neonatal, paediatric and adult care at 12 Vietnamese hospitals located in northern, central and southern Vietnam during 2017 and 2018. CRE colonisation was determined by culturing of faecal specimens on selective agar for CRE. Risk factors for CRE colonisation were evaluated. A CRE admission and discharge screening sub-study was conducted among one of the most vulnerable patient groups; infants treated at an 80-bed Neonatal ICU from March throughout June 2017 to assess CRE acquisition, hospital-acquired infection (HAI) and treatment outcome. RESULTS: A total of 1165 (52%) patients were colonised with CRE, most commonly Klebsiella pneumoniae (n = 805), Escherichia coli (n = 682) and Enterobacter spp. (n = 61). Duration of hospital stay, HAI and treatment with a carbapenem were independent risk factors for CRE colonisation. The PPS showed that the prevalence of CRE colonisation increased on average 4.2% per day and mean CRE colonisation rates increased from 13% on the day of admission to 89% at day 15 of hospital stay. At the NICU, CRE colonisation increased from 32% at admission to 87% at discharge, mortality was significantly associated (OR 5·5, P < 0·01) with CRE colonisation and HAI on admission. CONCLUSION: These data indicate that there is an epidemic spread of CRE in Vietnamese hospitals with rapid transmission to hospitalised patients.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Carrier State/epidemiology , Cross Infection/epidemiology , Enterobacteriaceae Infections/epidemiology , Hospitalization , Cost of Illness , Cross Infection/microbiology , Cross Infection/mortality , Cross Infection/transmission , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/mortality , Enterobacteriaceae Infections/transmission , Female , Humans , Male , Prevalence , Prognosis , Public Health Surveillance , Risk Factors , Vietnam/epidemiology
18.
Structure ; 26(11): 1513-1521.e3, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30220541

ABSTRACT

We introduce resonant soft X-ray scattering (RSoXS) as an approach to study the structure of proteins and other biological molecules in solution. Scattering contrast calculations suggest that RSoXS has comparable or even higher sensitivity than hard X-ray scattering because of contrast generated at the absorption edges of constituent elements, such as carbon and oxygen. Here, we demonstrate that working near the carbon edge reveals the envelope function of bovine serum albumin, using scattering volumes of 10-5 µL that are multiple orders of magnitude lower than traditional scattering experiments. Furthermore, tuning the X-ray energy within the carbon absorption edge provides different signatures of the size and shape of the protein by revealing the density of different types of bonding motifs within the protein. The combination of chemical specificity, smaller sample size, and enhanced X-ray contrast will propel RSoXS as a complementary tool to existing techniques for the study of biomolecular structure.


Subject(s)
Serum Albumin, Bovine/chemistry , X-Ray Diffraction/methods , Animals , Cattle , Models, Molecular , Protein Conformation
19.
ACS Appl Mater Interfaces ; 10(3): 2752-2761, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29309125

ABSTRACT

Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

20.
J Vet Med Sci ; 79(6): 1035-1042, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28458272

ABSTRACT

In Vietnam, especially central Vietnam, patients with fascioliasis are increasingly being reported. Since the fascioliasis is zoonotic, survey on the cattle fascioliasis should be informative for the control of human fascioliasis. In this study, the prevalence of cattle fascioliasis as well as the density of the intermediate host snails, Lymnaea swinhoei and L. viridis, were studied in Thua Thien Hue (TTH) province during 2014-2015. A total of 572 cattle feces were examined from 27 communes in 9 districts. Fasciola eggs were detected in cattle from 24 communes with an average prevalence of 23.4% (134/ 572). The highest prevalence was detected in cattle in the coastal plain terrain (31.0%) followed by plain (25.5%), mountain (21.7%), and low hilly (16.2%) terrains. The highest proportion of heavy infection (>200 EPG) was observed in the coastal plain terrain (36.1%), followed by mountains (20.0%), low hills (13.0%), and plains (8.9%). Low number of heavy infection, as well as relatively low prevalence in low hills and plains were associated with the extensive use of anti-fluke treatments. High number of intermediate host snails in low hilly and plain terrains also indicate high risk of fascioliasis. In this study, the density of Lymnaea snails in the coastal plain terrain was found to be very high (17.3 snails/m2) compared to that in previous studies. This is the first report indicating the recent expansion of cattle fascioliasis in the coastal region in Vietnam.


Subject(s)
Cattle Diseases/epidemiology , Fascioliasis/veterinary , Animals , Cattle , Fascioliasis/epidemiology , Lymnaea , Parasite Egg Count , Prevalence , Vietnam/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL