Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 25(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751914

ABSTRACT

In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the weights and bias of the FNN for developing a hybrid model (FNN-OSS). For achieving this goal, an experimental database containing 422 instances was firstly gathered from the literature and used to develop the FNN-OSS algorithm. The input variables in the database contained the geometrical characteristics of CFST columns, and the mechanical properties of two CFST constituent materials, i.e., steel and concrete. Thereafter, the selection of the appropriate parameters of FNN-OSS was performed and evaluated by common statistical measurements, for instance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In the next step, the prediction capability of the best FNN-OSS structure was evaluated in both global and local analyses, showing an excellent agreement between actual and predicted values of the load-bearing capacity. Finally, an in-depth investigation of the performance and limitations of FNN-OSS was conducted from a structural engineering point of view. The results confirmed the effectiveness of the FNN-OSS as a robust algorithm for the prediction of the CFST load-bearing capacity.


Subject(s)
Construction Industry/methods , Construction Materials/analysis , Engineering/methods , Machine Learning , Neural Networks, Computer , Steel/analysis , Weight-Bearing , Databases, Factual , Models, Theoretical
2.
Materials (Basel) ; 13(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717910

ABSTRACT

Warm mix asphalt (WMA) technology, taking advantage of reclaimed asphalt pavements, has gained increasing attention from the scientific community. The determination of technical specifications of such a type of asphalt concrete is crucial for pavement design, in which the asphalt concrete dynamic modulus (E*) of elasticity is amongst the most critical parameters. However, the latter could only be determined by complicated, costly, and time-consuming experiments. This paper presents an alternative cost-effective approach to determine the dynamic elastic modulus (E*) of WMA based on various machine learning-based algorithms, namely the artificial neural network (ANN), support vector machine (SVM), Gaussian process regression (GPR), and ensemble boosted trees (Boosted). For this, a total of 300 samples were fabricated by warm mix asphalt technology. The mixtures were prepared with 0%, 20%, 30%, 40%, and 50% content of reclaimed asphalt pavement (RAP) and modified bitumen binder using Sasobit and Zycotherm additives. The dynamic elastic modulus tests were conducted by varying the temperature from 10 °C to 50 °C at different frequencies from 0.1 Hz to 25 Hz. Various common quantitative indications, such as root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R) were used to validate and compare the prediction capability of different models. The results showed that machine learning models could accurately predict the dynamic elastic modulus of WMA using up to 50% RAP and fabricated by warm mix asphalt technology. Out of these models, the Boosted algorithm (R = 0.9956) was found as the best predictor compared with those obtained by ANN-LMN (R = 0.9954), SVM (R = 0.9654), and GPR (R= 0.9865). Thus, it could be concluded that Boosted is a promising cost-effective tool for the prediction of the dynamic elastic modulus (E*) of WMA. This study might help in reducing the cost of laboratory experiments for the determination of the dynamic modulus (E*).

3.
Materials (Basel) ; 13(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408473

ABSTRACT

In this paper, the main objectives are to investigate and select the most suitable parameters used in particle swarm optimization (PSO), namely the number of rules (nrule), population size (npop), initial weight (wini), personal learning coefficient (c1), global learning coefficient (c2), and velocity limits (fv), in order to improve the performance of the adaptive neuro-fuzzy inference system in determining the buckling capacity of circular opening steel beams. This is an important mechanical property in terms of the safety of structures under subjected loads. An available database of 3645 data samples was used for generation of training (70%) and testing (30%) datasets. Monte Carlo simulations, which are natural variability generators, were used in the training phase of the algorithm. Various statistical measurements, such as root mean square error (RMSE), mean absolute error (MAE), Willmott's index of agreement (IA), and Pearson's coefficient of correlation (R), were used to evaluate the performance of the models. The results of the study show that the performance of ANFIS optimized by PSO (ANFIS-PSO) is suitable for determining the buckling capacity of circular opening steel beams, but is very sensitive under different PSO investigation and selection parameters. The findings of this study show that nrule = 10, npop = 50, wini = 0.1 to 0.4, c1 = [1, 1.4], c2 = [1.8, 2], fv = 0.1, which are the most suitable selection values to ensure the best performance for ANFIS-PSO. In short, this study might help in selection of suitable PSO parameters for optimization of the ANFIS model.

4.
Materials (Basel) ; 13(5)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121104

ABSTRACT

Development of Foamed Concrete (FC) and incessant increases in fabrication technology have paved the way for many promising civil engineering applications. Nevertheless, the design of FC requires a large number of experiments to determine the appropriate Compressive Strength (CS). Employment of machine learning algorithms to take advantage of the existing experiments database has been attempted, but model performance can still be improved. In this study, the performance of an Artificial Neural Network (ANN) was fully analyzed to predict the 28 days CS of FC. Monte Carlo simulations (MCS) were used to statistically analyze the convergence of the modeled results under the effect of random sampling strategies and the network structures selected. Various statistical measures such as Coefficient of Determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were used for validation of model performance. The results show that ANN is a highly efficient predictor of the CS of FC, achieving a maximum R2 value of 0.976 on the training part and an R2 of 0.972 on the testing part, using the optimized C-ANN-[3,4,5,1] structure, which compares with previous published studies. In addition, a sensitivity analysis using Partial Dependence Plots (PDP) over 1000 MCS was also performed to interpret the relationship between the input parameters and 28 days CS of FC. Dry density was found as the variable with the highest impact to predict the CS of FC. The results presented could facilitate and enhance the use of C-ANN in other civil engineering-related problems.

5.
Materials (Basel) ; 13(5)2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32156033

ABSTRACT

Concrete filled steel tubes (CFSTs) show advantageous applications in the field of construction, especially for a high axial load capacity. The challenge in using such structure lies in the selection of many parameters constituting CFST, which necessitates defining complex relationships between the components and the corresponding properties. The axial capacity (Pu) of CFST is among the most important mechanical properties. In this study, the possibility of using a feedforward neural network (FNN) to predict Pu was investigated. Furthermore, an evolutionary optimization algorithm, namely invasive weed optimization (IWO), was used for tuning and optimizing the FNN weights and biases to construct a hybrid FNN-IWO model and improve its prediction performance. The results showed that the FNN-IWO algorithm is an excellent predictor of Pu, with a value of R2 of up to 0.979. The advantage of FNN-IWO was also pointed out with the gains in accuracy of 47.9%, 49.2%, and 6.5% for root mean square error (RMSE), mean absolute error (MAE), and R2, respectively, compared with simulation using the single FNN. Finally, the performance in predicting the Pu in the function of structural parameters such as depth/width ratio, thickness of steel tube, yield stress of steel, concrete compressive strength, and slenderness ratio was investigated and discussed.

6.
Chemosphere ; 244: 125450, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31816548

ABSTRACT

Polymer-assisted flocculation-dewatering of mineral processing tailings (MPT) is crucial for its environmental disposal. To reduce the number of laboratory experiments, this study proposes a novel and hybrid machine learning (ML) method for the prediction of the flocculation-dewatering performance. The proposed ML method utilizes principle component analysis (PCA) for the dimension-reduction of the input space. Then, ML prediction is performed using the combination of particle swarm optimisation (PSO) and adaptive neuro-fuzzy inference system (ANFIS). Monte Carlo simulations are used for the converged results. An experimental dataset of 102 data instances is prepared. 17 variables are chosen as inputs and the initial settling rate (ISR) is chosen as the output. Along with the raw dataset, two new datasets are prepared based on the cumulative sum of variance, namely PCA99 with 9 variables and PCA95 with 7 variables. The results show that Monte Carlo simulations need to be performed for over 100 times to reach the converged results. Based on the statistic indicators, it is found that the ML prediction on PCA99 and PCA95 is better than that on the raw dataset (average correlation coefficient is 0.85 for the raw dataset, 0.89 for the PCA99 dataset and 0.88 for the PCA95 dataset). Overall speaking, ML prediction has good prediction performance and it can be employed by the mine site to improve the efficiency and cost-effectiveness. This study presents a benchmark study for the prediction of ISR, which, with better consolidation and development, can become important tools for analysing and modelling flocculate-settling experiments.


Subject(s)
Machine Learning , Waste Disposal, Fluid/methods , Flocculation , Minerals , Polymers , Principal Component Analysis
7.
Sensors (Basel) ; 19(22)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766187

ABSTRACT

Gas multisensor devices offer an effective approach to monitor air pollution, which has become a pandemic in many cities, especially because of transport emissions. To be reliable, properly trained models need to be developed that combine output from sensors with weather data; however, many factors can affect the accuracy of the models. The main objective of this study was to explore the impact of several input variables in training different air quality indexes using fuzzy logic combined with two metaheuristic optimizations: simulated annealing (SA) and particle swarm optimization (PSO). In this work, the concentrations of NO2 and CO were predicted using five resistivities from multisensor devices and three weather variables (temperature, relative humidity, and absolute humidity). In order to validate the results, several measures were calculated, including the correlation coefficient and the mean absolute error. Overall, PSO was found to perform the best. Finally, input resistivities of NO2 and nonmetanic hydrocarbons (NMHC) were found to be the most sensitive to predict concentrations of NO2 and CO.

8.
Materials (Basel) ; 12(11)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195729

ABSTRACT

This study is devoted to the modeling and simulation of uncertainties in the constitutive elastic properties of material constituting a circular column under axial compression. To this aim, a probabilistic model dedicated to the construction of positive-definite random elasticity matrices was first used, involving two stochastic parameters: the mean value and a dispersion parameter. In order to compute the nonlinear effects between load and lateral deflection for the buckling problem of the column, a finite element framework combining a Newton-Raphson solver was developed. The finite element tool was validated by comparing the as-obtained critical buckling loads with those from Euler's formula at zero-fluctuation of the elasticity matrix. Three levels of fluctuations of material uncertainties were then propagated through the validated finite element tool using the probabilistic method as a stochastic solver. Results showed that uncertain material properties considerably influenced the buckling behavior of columns under axial loading. The coefficient of variation of a critical buckling load over 500 realizations were 15.477%, 26.713% and 41.555% when applying dispersion parameters of 0.3, 0.5 and 0.7, respectively. The 95% confidence intervals of column buckling response were finally given. The methodology of modeling presented in this paper is a potential candidate for accounting material uncertainties with some instabilities of structural elements under compression.

9.
Materials (Basel) ; 12(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083456

ABSTRACT

The presence of defects like gas bubble in fabricated parts is inherent in the selective laser sintering process and the prediction of bubble shrinkage dynamics is crucial. In this paper, two artificial intelligence (AI) models based on Decision Trees algorithm were constructed in order to predict bubble dissolution time, namely the Ensemble Bagged Trees (EDT Bagged) and Ensemble Boosted Trees (EDT Boosted). A metadata including 68644 data were generated with the help of our previously developed numerical tool. The AI models used the initial bubble size, external domain size, diffusion coefficient, surface tension, viscosity, initial concentration, and chamber pressure as input parameters, whereas bubble dissolution time was considered as output variable. Evaluation of the models' performance was achieved by criteria such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and coefficient of determination (R2). The results showed that EDT Bagged outperformed EDT Boosted. Sensitivity analysis was then conducted thanks to the Monte Carlo approach and it was found that three most important inputs for the problem were the diffusion coefficient, initial concentration, and bubble initial size. This study might help in quick prediction of bubble dissolution time to improve the production quality from industry.

10.
Sci Total Environ ; 679: 172-184, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31082591

ABSTRACT

In this study, we developed Different Artificial Intelligence (AI) models namely Artificial Neural Network (ANN), Adaptive Network based Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) for the prediction of Compression Coefficient of soil (Cc) which is one of the most important geotechnical parameters. A Monte Carlo approach was used for the sensitivity analysis of the AI models and input parameters. For the construction and validation of the models, 189 soft clayey soil samples were analyzed. In the models study, 13 input parameters: depth of sample, bulk density, plasticity index, moisture content, clay content, specific gravity, void ratio, liquid limit, dry density, porosity, plastic limit, degree of saturation, and liquidity index were used to obtain one output parameter "Cc". Validation of the models was done using statistical methods such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of determination (R2). Results of the model validation indicate that though performance of all the three models is good but SVM model is the best in the prediction of Cc. The Monte Carlo method based sensitivity analysis results show that out of the 13 input parameters considered for the models study, four parameters namely clay, degree of saturation, specific gravity and depth of sample are the most relevant in the prediction of Cc, and other parameters (bulk density, dry density, void ratio and porosity) are the most insignificant parameters for the prediction of Cc. Removal of these insignificant parameters helped to reduce the dimension of the input space and also model running time, and improved significantly the performance of the AI models. The results of this study might help in selecting the suitable AI models and input parameters for better and quick prediction of the Cc of soil.

11.
Materials (Basel) ; 12(10)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121948

ABSTRACT

This study aims to investigate the prediction of critical buckling load of steel columns using two hybrid Artificial Intelligence (AI) models such as Adaptive Neuro-Fuzzy Inference System optimized by Genetic Algorithm (ANFIS-GA) and Adaptive Neuro-Fuzzy Inference System optimized by Particle Swarm Optimization (ANFIS-PSO). For this purpose, a total number of 57 experimental buckling tests of novel high strength steel Y-section columns were collected from the available literature to generate the dataset for training and validating the two proposed AI models. Quality assessment criteria such as coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to validate and evaluate the performance of the prediction models. Results showed that both ANFIS-GA and ANFIS-PSO had a strong ability in predicting the buckling load of steel columns, but ANFIS-PSO (R2 = 0.929, RMSE = 60.522 and MAE = 44.044) was slightly better than ANFIS-GA (R2 = 0.916, RMSE = 65.371 and MAE = 48.588). The two models were also robust even with the presence of input variability, as investigated via Monte Carlo simulations. This study showed that the hybrid AI techniques could help constructing an efficient numerical tool for buckling analysis.

12.
Materials (Basel) ; 12(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934566

ABSTRACT

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model's performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R²). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R² = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R² = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.

SELECTION OF CITATIONS
SEARCH DETAIL