Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1224383, 2023.
Article in English | MEDLINE | ID: mdl-38146368

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.


Subject(s)
Gastrointestinal Microbiome , Pneumonia , Receptors, Cell Surface , Tobacco Smoke Pollution , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/microbiology , Animals , Mice , Mice, Inbred C57BL , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/pathology , Feces/microbiology , Bacteria/classification , Bacteria/metabolism , Biodiversity , Gene Expression
2.
Front Immunol ; 14: 1261483, 2023.
Article in English | MEDLINE | ID: mdl-37841243

ABSTRACT

Introduction: The pathogenesis of chronic lung diseases is multifaceted with a major role of recurrent micro-injuries of the epithelium. While several reports clearly indicated a prominent role for surfactant-producing alveolar epithelial type 2 (AT2) cells, the contribution of gas exchange-permissive alveolar epithelial type 1 (AT1) cells has not been addressed yet. Here, we investigated whether repeated injury of AT1 cells leads to inflammation and interstitial fibrosis. Methods: We chose an inducible model of AT1 cell depletion following local diphtheria toxin (DT) administration using an iDTR flox/flox (idTRfl/fl) X Aquaporin 5CRE (Aqp5CRE) transgenic mouse strain. Results: We investigated repeated doses and intervals of DT to induce cell death of AT1 cells causing inflammation and interstitial fibrosis. We found that repeated DT administrations at 1ng in iDTRfl/fl X Aqp5CRE mice cause AT1 cell death leading to inflammation, increased tissue repair markers and interstitial pulmonary fibrosis. Discussion: Together, we demonstrate that depletion of AT1 cells using repeated injury represents a novel approach to investigate chronic lung inflammatory diseases and to identify new therapeutic targets.


Subject(s)
Pneumonia , Reinjuries , Mice , Animals , Mice, Transgenic , Inflammation , Fibrosis , Cell Death
3.
PLoS Biol ; 20(12): e3001891, 2022 12.
Article in English | MEDLINE | ID: mdl-36477165

ABSTRACT

Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.


Subject(s)
Astrocytes , Connexins , Disease Models, Animal , Animals , Mice , Connexins/metabolism , Astrocytes/metabolism
4.
Front Immunol ; 13: 918507, 2022.
Article in English | MEDLINE | ID: mdl-36045672

ABSTRACT

Chronic pulmonary inflammation and chronic obstructive pulmonary disease (COPD) are major health issues largely due to air pollution and cigarette smoke (CS) exposure. The role of the innate receptor NLRP3 (nucleotide-binding domain and leucine-rich repeat containing protein 3) orchestrating inflammation through formation of an inflammasome complex in CS-induced inflammation or COPD remains controversial. Using acute and subchronic CS exposure models, we found that Nlrp3-deficient mice or wild-type mice treated with the NLRP3 inhibitor MCC950 presented an important reduction of inflammatory cells recruited into the bronchoalveolar space and of pulmonary inflammation with decreased chemokines and cytokines production, in particular IL-1ß demonstrating the key role of NLRP3. Furthermore, mice deficient for Caspase-1/Caspase-11 presented also decreased inflammation parameters, suggesting a role for the NLRP3 inflammasome. Importantly we showed that acute CS-exposure promotes NLRP3-dependent cleavage of gasdermin D in macrophages present in the bronchoalveolar space and in bronchial airway epithelial cells. Finally, Gsdmd-deficiency reduced acute CS-induced lung and bronchoalveolar space inflammation and IL-1ß secretion. Thus, we demonstrated in our model that NLRP3 and gasdermin D are key players in CS-induced pulmonary inflammation and IL-1ß release potentially through gasdermin D forming-pore and/or pyroptoctic cell death.


Subject(s)
Cigarette Smoking , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Caspase 1/metabolism , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Nicotiana/metabolism
5.
Blood ; 140(4): 374-387, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35472080

ABSTRACT

Iron homeostasis depends on both intracellular control through iron-responsive proteins and the systemic level of iron through hepcidin-ferroportin axis. Indeed, the hormone hepcidin downregulates the ferroportin iron exporter to control iron recycling from macrophages and iron uptake from enterocytes. Here, we focused on the role of autophagy in macrophage iron metabolism and systemic iron homeostasis. Mice deficient for autophagy in macrophages (LysM-Atg5-/-) mimicked a primary iron overload phenotype, resulting in high ferroportin expression in both macrophages and enterocytes that correlated with marked parenchymal iron overload. Furthermore, LysM-Atg5-/- mice exhibited increased hematopoietic activity with no sign of anemia but correlating with rather high plasma iron level. Compared with wild-type cells, bone marrow-derived macrophages from LysM-Atg5-/- mice had significantly increased ferroportin expression and decreased iron content, confirming high iron export. In erythrophagocytic macrophages, autophagy regulates hemosiderin storage mechanisms as well as degradation of ferroportin and subsequently its plasma membrane localization and iron export; furthermore, ferroportin colocalization with hepcidin indicates hepcidin autocrine activity. Relatively high hepatic hepcidin expression and decreased hepcidin level in the spleen of LysM-Atg5-/- mice, correlating with low hemosiderin iron storage, as well as in erythrophagocytic Atg5-/- macrophages were evidenced. Therefore, our results highlight the critical role of autophagy in macrophages for iron trafficking and systemic iron homeostasis. We propose that in macrophages, autophagy restricts ferroportin level and iron export, resulting in hepcidin expression with an autocrine-paracrine effect that plays a role in the regulation of ferroportin expression in duodenal enterocytes.


Subject(s)
Hepcidins , Iron Overload , Animals , Autophagy , Hemosiderin/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Homeostasis , Iron/metabolism , Iron Overload/metabolism , Macrophages/metabolism , Mice
6.
Immunohorizons ; 5(5): 273-283, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958388

ABSTRACT

Cystic fibrosis is associated with chronic Pseudomonas aeruginosa colonization and inflammation. The role of MyD88, the shared adapter protein of the proinflammatory TLR and IL-1R families, in chronic P. aeruginosa biofilm lung infection is unknown. We report that chronic lung infection with the clinical P. aeruginosa RP73 strain is associated with uncontrolled lung infection in complete MyD88-deficient mice with epithelial damage, inflammation, and rapid death. Then, we investigated whether alveolar or myeloid cells contribute to heightened sensitivity to infection. Using cell-specific, MyD88-deficient mice, we uncover that the MyD88 pathway in myeloid or alveolar epithelial cells is dispensable, suggesting that other cell types may control the high sensitivity of MyD88-deficient mice. By contrast, IL-1R1-deficient mice control chronic P. aeruginosa RP73 infection and IL-1ß Ab blockade did not reduce host resistance. Therefore, the IL-1R1/MyD88 pathway is not involved, but other IL-1R or TLR family members need to be investigated. Our data strongly suggest that IL-1 targeted neutralizing therapies used to treat inflammatory diseases in patients unlikely reduce host resistance to chronic P. aeruginosa infection.


Subject(s)
Interleukin-1beta/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Receptors, Interleukin-1 Type I/immunology , Animals , Humans , Immunity, Innate , Interleukin-1beta/genetics , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Pseudomonas Infections/metabolism , Receptors, Interleukin-1 Type I/genetics , Signal Transduction , Toll-Like Receptors/immunology
7.
J Cell Mol Med ; 25(10): 4721-4731, 2021 05.
Article in English | MEDLINE | ID: mdl-33734594

ABSTRACT

The aryl hydrocarbon receptor (AHR) controls several inflammatory and metabolic pathways involved in various diseases, including the development of arthritis. Here, we investigated the role of AHR activation in IL-22-dependent acute arthritis using the K/BxN serum transfer model. We observed an overall reduction of cytokine expression in Ahr-deficient mice, along with decreased signs of joint inflammation. Conversely, we report worsened arthritis symptoms in Il-22 deficient mice. Pharmacological stimulation of AHR with the agonist VAG539, as well as injection of recombinant IL-22, given prior arthritogenic triggering, attenuated inflammation and reduced joint destruction. The protective effect of VAG539 was abrogated in Il-22 deficient mice. Finally, conditional Ahr depletion of Rorc-expressing cells was sufficient to attenuate arthritis, thereby uncovering a previously unsuspected role of AHR in type 3 innate lymphoid cells during acute arthritis.


Subject(s)
Arthritis, Experimental/pathology , Basic Helix-Loop-Helix Transcription Factors/physiology , Immunity, Innate/immunology , Inflammation/pathology , Interleukins/physiology , Joints/pathology , Lymphocytes/pathology , Receptors, Aryl Hydrocarbon/physiology , Acute Disease , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/metabolism , Female , Inflammation/etiology , Inflammation/metabolism , Joints/metabolism , Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Interleukin-22
8.
Kidney360 ; 2(11): 1793-1806, 2021 11 25.
Article in English | MEDLINE | ID: mdl-35372998

ABSTRACT

Background: Xanthinuria type II is a rare autosomal purine disorder. This recessive defect of purine metabolism remains an under-recognized disorder. Methods: Mice with targeted disruption of the molybdenum cofactor sulfurase (Mocos) gene were generated to enable an integrated understanding of purine disorders and evaluate pathophysiologic functions of this gene which is found in a large number of pathways and is known to be associated with autism. Results: Mocos-deficient mice die with 4 weeks of age due to renal failure of distinct obstructive nephropathy with xanthinuria, xanthine deposits, cystic tubular dilation, Tamm-Horsfall (uromodulin) protein (THP) deposits, tubular cell necrosis with neutrophils, and occasionally hydronephrosis with urolithiasis. Obstructive nephropathy is associated with moderate interstitial inflammatory and fibrotic responses, anemia, reduced detoxification systems, and important alterations of the metabolism of purines, amino acids, and phospholipids. Conversely, heterozygous mice expressing reduced MOCOS protein are healthy with no apparent pathology. Conclusions: Mocos-deficient mice develop a lethal obstructive nephropathy associated with profound metabolic changes. Studying MOCOS functions may provide important clues about the underlying pathogenesis of xanthinuria and other diseases requiring early diagnosis.


Subject(s)
Kidney Diseases , Purine-Pyrimidine Metabolism, Inborn Errors , Urolithiasis , Animals , Kidney Diseases/genetics , Mice , Purine-Pyrimidine Metabolism, Inborn Errors/complications , Urolithiasis/genetics , Xanthine , Xanthine Dehydrogenase
10.
Front Immunol ; 11: 1622, 2020.
Article in English | MEDLINE | ID: mdl-32849550

ABSTRACT

Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity.


Subject(s)
B-Cell Activating Factor/biosynthesis , Inhalation Exposure/adverse effects , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , B-Cell Activating Factor/genetics , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Gene Expression , Humans , Inflammation Mediators/metabolism , Male , Mice , Neutrophil Infiltration , Pneumonia/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Tobacco Smoking/adverse effects
11.
Front Immunol ; 11: 588799, 2020.
Article in English | MEDLINE | ID: mdl-33488589

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of interstitial lung disease for which current treatments display limited efficacy. IPF is largely driven by host-derived danger signals released upon recurrent local tissue damage. Here we explored the roles of self-DNA and stimulator of interferon genes (STING), a protein belonging to an intracellular DNA sensing pathway that leads to type I and/or type III interferon (IFN) production upon activation. Using a mouse model of IPF, we report that STING deficiency leads to exacerbated pulmonary fibrosis with increased collagen deposition in the lungs and excessive remodeling factors expression. We further show that STING-mediated protection does not rely on type I IFN signaling nor on IL-17A or TGF-ß modulation but is associated with dysregulated neutrophils. Together, our data support an unprecedented immunoregulatory function of STING in lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis/immunology , Membrane Proteins/immunology , Animals , Bleomycin , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Collagen/metabolism , Disease Models, Animal , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Nucleic Acids , Nucleotidyltransferases/genetics , Receptor, Interferon alpha-beta/genetics
12.
Biol Open ; 8(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699684

ABSTRACT

Gel-forming mucins are the main organic component responsible for physical properties of the mucus hydrogels. While numerous biological functions of these mucins are well documented, specific physiological functions of each mucin are largely unknown. To investigate in vivo functions of the gel-forming mucin Muc5b, which is one of the major secreted airway mucins, along with Muc5ac, we generated mice in which Muc5b was disrupted and maintained in the absence of environmental stress. Adult Muc5b-deficient mice displayed bronchial hyperplasia and metaplasia, interstitial thickening, alveolar collapse, immune cell infiltrates, fragmented and disorganized elastin fibers and collagen deposits that were, for approximately one-fifth of the mice, associated with altered pulmonary function leading to respiratory failure. These lung abnormalities start early in life, as demonstrated in one-quarter of 2-day-old Muc5b-deficient pups. Thus, the mouse mucin Muc5b is essential for maintaining normal lung function.

13.
Sci Rep ; 9(1): 14848, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619733

ABSTRACT

Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.


Subject(s)
DNA/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Pneumonia/metabolism , Pulmonary Emphysema/metabolism , Receptor, Interferon alpha-beta/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Repetitive Sequences, Nucleic Acid
14.
Front Immunol ; 10: 702, 2019.
Article in English | MEDLINE | ID: mdl-31057534

ABSTRACT

Oral T. gondii infection (30 cysts of 76K strain) induces acute lethal ileitis in sensitive C57BL/6 (B6) mice with increased expression of IL-33 and its receptor ST2 in the ileum. Here we show that IL-33 is involved in ileitis, since absence of IL-33R/ST2 attenuated neutrophilic inflammation and Th1 cytokines upon T. gondii infection with enhanced survival. Blockade of ST2 by neutralizing ST2 antibody in B6 mice conferred partial protection, while rmIL-33 aggravated ileitis. Since IL-22 expression further increased in absence of ST2, we blocked IL-22 by neutralizing antibody, which abrogated protection from acute ileitis in ST2 deficient mice. In conclusion, severe lethal ileitis induced by oral T. gondii infection is attenuated by blockade of ST2 signaling and may be mediated in part by endogenous IL-22.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukins/metabolism , Toxoplasma/metabolism , Toxoplasmosis, Animal/metabolism , Animals , Cytokines/metabolism , Gastrointestinal Microbiome/physiology , Ileitis/metabolism , Ileitis/parasitology , Ileum/metabolism , Ileum/parasitology , Inflammation/metabolism , Inflammation/parasitology , Interferon-gamma/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Interleukin-22
15.
Nat Commun ; 9(1): 5226, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30523277

ABSTRACT

Silica particles induce lung inflammation and fibrosis. Here we show that stimulator of interferon genes (STING) is essential for silica-induced lung inflammation. In mice, silica induces lung cell death and self-dsDNA release in the bronchoalveolar space that activates STING pathway. Degradation of extracellular self-dsDNA by DNase I inhibits silica-induced STING activation and the downstream type I IFN response. Patients with silicosis have increased circulating dsDNA and CXCL10 in sputum, and patients with fibrotic interstitial lung disease display STING activation and CXCL10 in the lung. In vitro, while mitochondrial dsDNA is sensed by cGAS-STING in dendritic cells, in macrophages extracellular dsDNA activates STING independent of cGAS after silica exposure. These results reveal an essential function of STING-mediated self-dsDNA sensing after silica exposure, and identify DNase I as a potential therapy for silica-induced lung inflammation.


Subject(s)
DNA/metabolism , Membrane Proteins/metabolism , Pneumonia/metabolism , Silicon Dioxide/metabolism , Animals , Cells, Cultured , Chemokine CXCL10/metabolism , DNA/genetics , Dendritic Cells/metabolism , Humans , Macrophages/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/genetics , Silicon Dioxide/chemistry , Silicosis/metabolism , Sputum/metabolism
16.
Cell Rep ; 25(8): 2053-2060.e4, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30463004

ABSTRACT

Recent observations clearly highlight the critical role of type 2 innate lymphoid cells in maintaining the homeostasis of adipose tissues in humans and mice. This cell population promotes beiging and limits adiposity directly and indirectly by sustaining a Th2-prone environment enriched in eosinophils and alternatively activated macrophages. Accordingly, the number and function of type 2 innate lymphoid cells (ILC2s) are strongly impaired in obese individuals. In this work, we identify the PD-1-PD-L1 pathway as a factor leading to ILC2 destabilization upon high-fat feeding resulting in impaired tissue metabolism. Tumor necrosis factor (TNF) appears to play a central role, triggering interleukin-33 (IL-33)-dependent PD-1 expression on ILC2s and recruiting and activating PD-L1hi M1 macrophages. PD-1 blockade partially restores the type 2 innate axis, raising the possibility of restoring tissue homeostasis.


Subject(s)
Immunity, Innate , Lymphocytes/metabolism , Obesity/immunology , Obesity/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Eosinophils/metabolism , Homeostasis , Inflammation/pathology , Interleukin-33/metabolism , Macrophage Activation , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Obese , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
17.
Sci Rep ; 8(1): 11245, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050168

ABSTRACT

Allergic asthma is characterized by a strong Th2 and Th17 response with inflammatory cell recruitment, airways hyperreactivity and structural changes in the lung. The protease allergen papain disrupts the airway epithelium triggering a rapid eosinophilic inflammation by innate lymphoid cell type 2 (ILC2) activation, leading to a Th2 immune response. Here we asked whether the daily oral administrations of the probiotic Escherichia coli strain Nissle 1917 (ECN) might affect the outcome of the papain protease induced allergic lung inflammation in BL6 mice. We find that ECN gavage significantly prevented the severe allergic response induced by repeated papain challenges and reduced lung inflammatory cell recruitment, Th2 and Th17 response and respiratory epithelial barrier disruption with emphysema and airway hyperreactivity. In conclusion, ECN administration attenuated severe protease induced allergic inflammation, which may be beneficial to prevent allergic asthma.


Subject(s)
Allergens/administration & dosage , Asthma/prevention & control , Escherichia coli/growth & development , Immunologic Factors/administration & dosage , Papain/administration & dosage , Probiotics/administration & dosage , Administration, Oral , Animals , Asthma/chemically induced , Asthma/pathology , Disease Models, Animal , Mice , Mice, Inbred C57BL , Respiratory Mucosa/pathology , Th17 Cells/immunology , Th2 Cells/immunology , Treatment Outcome
18.
Front Immunol ; 9: 1476, 2018.
Article in English | MEDLINE | ID: mdl-29988569

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive, devastating, and yet untreatable fibrotic disease of unknown origin. Interleukin-33 (IL-33), an IL-1 family member acts as an alarmin with pro-inflammatory properties when released after stress or cell death. Here, we investigated the role of IL-33 in the bleomycin (BLM)-induced inflammation and fibrosis model using mice IL-33 receptor [chain suppression of tumorigenicity 2 (ST2)] mice compared with C57BL/6 wild-type mice. Unexpectedly, 24 h post-BLM treatment ST2-deficient mice displayed augmented inflammatory cell recruitment, in particular by neutrophils, together with enhanced levels of chemokines and remodeling factors in the bronchoalveolar space and/or the lungs. At 11 days, lung remodeling and fibrosis were decreased with reduced M2 macrophages in the lung associated with M2-like cytokine profile in ST2-deficient mice, while lung cellular inflammation was decreased but with fluid retention (edema) increased. In vivo magnetic resonance imaging (MRI) analysis demonstrates a rapid development of edema detectable at day 7, which was increased in the absence of ST2. Our results demonstrate that acute neutrophilic pulmonary inflammation leads to the development of an IL-33/ST2-dependent lung fibrosis associated with the production of M2-like polarization. In addition, non-invasive MRI revealed enhanced inflammation with lung edema during the development of pulmonary inflammation and fibrosis in absence of ST2.

19.
Sci Transl Med ; 10(443)2018 05 30.
Article in English | MEDLINE | ID: mdl-29848662

ABSTRACT

Epilepsies are characterized by recurrent seizures, which disrupt normal brain function. Alterations in neuronal excitability and excitation-inhibition balance have been shown to promote seizure generation, yet molecular determinants of such alterations remain to be identified. Pannexin channels are nonselective, large-pore channels mediating extracellular exchange of neuroactive molecules. Recent data suggest that these channels are activated under pathological conditions and regulate neuronal excitability. However, whether pannexin channels sustain or counteract chronic epilepsy in human patients remains unknown. We studied the impact of pannexin-1 channel activation in postoperative human tissue samples from patients with epilepsy displaying epileptic activity ex vivo. These samples were obtained from surgical resection of epileptogenic zones in patients suffering from lesional or drug-resistant epilepsy. We found that pannexin-1 channel activation promoted seizure generation and maintenance through adenosine triphosphate signaling via purinergic 2 receptors. Pharmacological inhibition of pannexin-1 channels with probenecid or mefloquine-two medications currently used for treating gout and malaria, respectively-blocked ictal discharges in human cortical brain tissue slices. Genetic deletion of pannexin-1 channels in mice had anticonvulsant effects when the mice were exposed to kainic acid, a model of temporal lobe epilepsy. Our data suggest a proepileptic role of pannexin-1 channels in chronic epilepsy in human patients and that pannexin-1 channel inhibition might represent an alternative therapeutic strategy for treating lesional and drug-resistant epilepsies.


Subject(s)
Brain/metabolism , Brain/pathology , Connexins/metabolism , Epilepsy/metabolism , Nerve Tissue Proteins/metabolism , Seizures/metabolism , Adenosine Triphosphate/metabolism , Animals , Cerebral Cortex/pathology , Disease Models, Animal , Epilepsy/drug therapy , Epilepsy/pathology , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Humans , Kainic Acid , Mefloquine/pharmacology , Mefloquine/therapeutic use , Mice , Probenecid/pharmacology , Probenecid/therapeutic use , Seizures/drug therapy , Seizures/pathology , Signal Transduction/drug effects
20.
Proc Natl Acad Sci U S A ; 114(23): 6092-6097, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533409

ABSTRACT

Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to switch from IgM expression to the expression of downstream isotypes. CSR is preceded by inducible germline (GL) transcription of the constant genes and is controlled by the 3' regulatory region (3'RR) in a stimulus-dependent manner. Why the 3'RR-mediated up-regulation of GL transcription is delayed to the mature B-cell stage is presently unknown. Here we show that mice devoid of an inducible CTCF binding element, located in the α constant gene, display a marked isotype-specific increase of GL transcription in developing and resting splenic B cells and altered CSR in activated B cells. Moreover, insertion of a GL promoter downstream of the CTCF insulator led to premature activation of the ectopic promoter. This study provides functional evidence that the 3'RR has a developmentally controlled potential to constitutively activate GL promoters but that this activity is delayed, at least in part, by the CTCF insulator, which borders a transcriptionally active domain established by the 3'RR in developing B cells.


Subject(s)
CCCTC-Binding Factor/genetics , Immunoglobulin Heavy Chains/genetics , 3' Untranslated Regions , Animals , B-Lymphocytes/metabolism , Base Sequence , CCCTC-Binding Factor/metabolism , Female , Germ Cells , Immunoglobulin Class Switching/genetics , Immunoglobulin Heavy Chains/metabolism , Male , Mice , Mice, 129 Strain , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Transcription, Genetic , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...