Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Nat Methods ; 21(4): 543-545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38609555

Subject(s)
Placozoa , Animals
2.
Chemosphere ; 358: 141839, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636911

ABSTRACT

Mediterranean marine biota suffers from various anthropogenic threats. Among them, pollutants such as mercury (Hg) represent important environmental issues that are exacerbated by bioaccumulation and bioamplification along food webs via its organic form, monomethylmercury (MMHg). To date, very little is known regarding the impact of mercury on Porifera and the few available studies have been exclusively focused on Demospongiae. This work studies the effect of MMHgCl at different biological levels of Oscarella lobularis (Porifera, Homoscleromorpha). Bioaccumulation assays show that MMHgCl significantly accumulated in sponge tissues after a 96-h exposure to 0.1 µg L-1. Toxicity assays (LC5096h) show a sensibility that depends on life-stage (adult vs bud). Additionally, we show that the exposure to 1 µg L-1 MMHgCl negatively impacts the epithelial integrity and the regeneration process in buds, as shown by the loss of cell-cell contacts and the alteration of osculum morphogenesis. For the first time in a sponge, a whole set of genes classically involved in metal detoxification and in antioxidant response were identified. Significant changes in catalase, superoxide dismutase and nuclear factor (erythroid-derived 2)-like 2 expressions in exposed juveniles were measured. Such an integrative approach from the physiological to the molecular scales on a non-model organism expands our knowledge concerning sensitivity and toxicity mechanisms induced by MMHg in Porifera, raising new questions regarding the possible defences used by marine sponges.

3.
Proc Natl Acad Sci U S A ; 121(9): e2316722121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377188

ABSTRACT

Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.


Subject(s)
Actins , Adherens Junctions , Humans , Adherens Junctions/metabolism , Actins/metabolism , Caco-2 Cells , Cadherins/genetics , Cadherins/metabolism , Intercellular Junctions/metabolism , Tight Junctions/metabolism , Catenins/metabolism , Epithelial Cells/metabolism
4.
Sci Total Environ ; 914: 169410, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38123080

ABSTRACT

Vanadium (V) concentrations in organisms are usually very low. To date, among animals, only some urochordate and annelid species contain very high levels of V in their tissues. A new case of hyper-accumulation of V in a distinct animal phylum (Porifera), namely, the two homoscleromorph sponge species Oscarella lobularis and O. tuberculata is reported. The measured concentrations (up to 30 g/kg dry weight) exceed those reported previously and are not found in all sponge classes. In both Oscarella species, V is mainly accumulated in the surface tissues, and in mesohylar cells, as V(IV), before being partly reduced to V(III) in the deeper tissues. Candidate genes from Bacteria and sponges have been identified as possibly being involved in the metabolism of V. This finding provides clues for the development of bioremediation strategies in marine ecosystems and/or bioinspired processes to recycle this critical metal.


Subject(s)
Porifera , Urochordata , Animals , Vanadium , Ecosystem
5.
BMC Biol ; 21(1): 139, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337252

ABSTRACT

BACKGROUND: Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS: We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS: The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.


Subject(s)
Genome , Porifera , Animals , Porifera/genetics , Porifera/metabolism , Genomics , Transcription Factors/genetics , Signal Transduction , Phylogeny
6.
Elife ; 112022 11 07.
Article in English | MEDLINE | ID: mdl-36341714

ABSTRACT

Epithelial tissues acquire their integrity and function through the apico-basal polarization of their constituent cells. Proteins of the PAR and Crumbs complexes are pivotal to epithelial polarization, but the mechanistic understanding of polarization is challenging to reach, largely because numerous potential interactions between these proteins and others have been found, without a clear hierarchy in importance. We identify the regionalized and segregated organization of members of the PAR and Crumbs complexes at epithelial apical junctions by imaging endogenous proteins using stimulated-emission-depletion microscopy on Caco-2 cells, and human and murine intestinal samples. Proteins organize in submicrometric clusters, with PAR3 overlapping with the tight junction (TJ) while PALS1-PATJ and aPKC-PAR6ß form segregated clusters that are apical of the TJ and present in an alternated pattern related to actin organization. CRB3A is also apical of the TJ and partially overlaps with other polarity proteins. Of the numerous potential interactions identified between polarity proteins, only PALS1-PATJ and aPKC-PAR6ß are spatially relevant in the junctional area of mature epithelial cells, simplifying our view of how polarity proteins could cooperate to drive and maintain cell polarity.


Many of our organs, including the lungs and the intestine, are lined with a single layer of cells that separate the inside of the organ from the surrounding environment inside the body. These so-called epithelial cells form a tightly packed barrier and have a very characteristic organization. The apical surface faces the outside world, while the basal surface faces the inner tissues. These different interfaces are reflected in the organization of the cells themselves. The shape, composition, and role of the apical cell surface are distinct from those of the basal surface, and they also contain different proteins. In some epithelial cells, the apical surface specializes and forms protruding structures called microvilli. Thus, epithelial cells are said to be polarized along this apical­basal axis. Over the last 30 years, many labs have identified and studied which proteins help epithelial cells become and stay polarized. Previous biochemical experiments showed that these so-called polarity proteins interact with each other in many different ways. But it remains unclear whether some of these interactions are more important than others, and where exactly in the apical or basal membranes these interactions take place. Mangeol et al. used super-resolution microscopy to observe the polarity of proteins at the apical membranes of both human and mouse cells from the small intestine to answer these questions. They focused on areas called tight junctions, where the intestinal cells connect with each other to form the barrier between the outside and the inside. First, all the polarity proteins clustered together in various formations, they were not distributed uniformly. For example, one protein called PAR3 was at the level of the tight junctions, whereas other proteins were closer to the apical surface and the outside world. Only two pairs of proteins ­ PAR6 and aPKC, and PALS1 and PATJ ­ formed stable clusters with each other. This finding was unexpected because previous biochemical experiments had predicted multiple interactions. Third, the PALS1/PATJ complexes stayed at the bottom of the microvilli protrusions, whereas PAR6/aPKC were inside the protrusions. Taken together, these experiments reveal a detailed snapshot of how the polarity proteins themselves are organized at the apical surface of epithelial cells. Future work will be able to address how these protein complexes behave over time.


Subject(s)
Epithelial Cells , Tight Junctions , Humans , Animals , Mice , Caco-2 Cells , Epithelium , Microscopy
7.
BMC Ecol Evol ; 21(1): 160, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34418961

ABSTRACT

BACKGROUND: The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. RESULTS: To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. CONCLUSIONS: Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell-cell and cell-matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.


Subject(s)
Genomics , Porifera , Animals , Cell Adhesion , Epithelium , Morphogenesis
8.
Methods Mol Biol ; 2256: 257-275, 2021.
Article in English | MEDLINE | ID: mdl-34014527

ABSTRACT

Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Mechanotransduction, Cellular , Multiprotein Complexes/metabolism , PDZ Domains , Proteins/metabolism , Animals , Humans
9.
Small GTPases ; 12(1): 13-19, 2021 01.
Article in English | MEDLINE | ID: mdl-30032715

ABSTRACT

The leading edge-to-cadherin contact transitions that occur during metazoan developmental processes and disease states require fine coordination of Rac and Rho pathways. Recently the elmo-mbc complex, a Rac GEF and RhoGAP19D, a Rho GAP were identified as key, conserved regulators that link Rac and Rho during these transitions. The corresponding Rho GEF and Rac GAP remain hidden amongst the large family of GEF and GAP proteins. Identification of these regulators is essential to understand GTPase coordination during these transitions. Here we find two candidates based on the mammalian literature and use RNAi to explore the fly ortholog effects on the dorsal closure epidermis. RhoGEF64C and RhoGAP92B are strong contenders to couple Rac and Rho during mesenchymal-to-epithelial-like transitions.


Subject(s)
Rho Guanine Nucleotide Exchange Factors
10.
Methods Mol Biol ; 2219: 81-97, 2021.
Article in English | MEDLINE | ID: mdl-33074535

ABSTRACT

To better understand the origin of animal cell types, body plans, and other morphological features, further biological knowledge and understanding are needed from non-bilaterian phyla, namely, Placozoa, Ctenophora, and Porifera. This chapter describes recent cell staining approaches that have been developed in three phylogenetically distinct sponge species-the homoscleromorph Oscarella lobularis, and the demosponges Amphimedon queenslandica and Lycopodina hypogea-to enable analyses of cell death, proliferation, and migration. These methods allow for a more detailed understanding of cellular behaviors and fates, and morphogenetic processes in poriferans, building on current knowledge of sponge cell biology that relies chiefly on classical (static) histological observations.


Subject(s)
Porifera/cytology , Staining and Labeling/methods , Animals , Cell Tracking/methods , Fluorescent Antibody Technique/methods , Optical Imaging/methods
11.
BMC Genomics ; 19(1): 393, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29793430

ABSTRACT

BACKGROUND: The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. RESULTS: To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. CONCLUSIONS: These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia.


Subject(s)
Epithelium/metabolism , Evolution, Molecular , Genomics , Adherens Junctions/metabolism , Amino Acid Sequence , Animals , Cadherins/chemistry , Cadherins/genetics , Cadherins/metabolism , Ctenophora/genetics , Ctenophora/metabolism , Porifera/genetics , Porifera/metabolism , Protein Domains
12.
Development ; 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29437779

ABSTRACT

Many metazoan developmental processes require cells to transition between migratory mesenchymal- and adherent epithelial-like states. These transitions require Rho GTPase-mediated actin rearrangements downstream of integrin and cadherin pathways. A regulatory toolbox of GEF and GAP proteins precisely coordinates Rho protein activities, yet defining the involvement of specific regulators within a cellular context remains a challenge due to overlapping and coupled activities. Here we demonstrate that Drosophila dorsal closure is a powerful model for Rho GTPase regulation during transitions from leading edges to cadherin contacts. During these transitions a Rac GEF elmo-mbc complex regulates both lamellipodia and Rho1-dependent, actomyosin-mediated tension at initial cadherin contacts. Moreover, the Rho GAP Rhogap19d controls Rac and Rho GTPases during the same processes and genetically regulates the elmo-mbc complex. This study presents a fresh framework to understand the inter-relationship between GEF and GAP proteins that tether Rac and Rho cycles during developmental processes.

13.
Semin Cell Dev Biol ; 81: 13-20, 2018 09.
Article in English | MEDLINE | ID: mdl-29056580

ABSTRACT

Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells. These are the Par complex including aPKC, PAR3 and PAR6 and the Crumbs complex including, CRUMBS, PALS1 and PATJ/MUPP1. These two complexes interact directly and in addition to their already well described functions, they play a role in other cellular processes such as ciliogenesis and polarized cell migration. In this review, we will focus on these aspects that involve the apical Crumbs polarity complex and its relation with the cortical actin cytoskeleton which might provide a more comprehensive hypothesis to explain the many facets of Crumbs cell and tissue properties.


Subject(s)
Actins/metabolism , Cell Movement , Cilia/metabolism , Eye Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Adherens Junctions/metabolism , Animals , Cell Polarity , Epithelial Cells/metabolism , Humans
14.
Sci Rep ; 7(1): 16778, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196707

ABSTRACT

The Crumbs (Crb) complex is a key epithelial determinant. To understand its role in morphogenesis, we examined its function in the Drosophila pupal wing, an epithelium undergoing hexagonal packing and formation of planar-oriented hairs. Crb distribution is dynamic, being stabilized to the subapical region just before hair formation. Lack of crb or stardust, but not DPatj, affects hexagonal packing and delays hair formation, without impairing epithelial polarities but with increased fluctuations in cell junctions and perimeter length, fragmentation of adherens junctions and the actomyosin cytoskeleton. Crb interacts with Moesin and Yurt, FERM proteins regulating the actomyosin network. We found that Moesin and Yurt distribution at the subapical region depends on Crb. In contrast to previous reports, yurt, but not moesin, mutants phenocopy crb junctional defects. Moreover, while unaffected in crb mutants, cell perimeter increases in yurt mutant cells and decreases in the absence of moesin function. Our data suggest that Crb coordinates proper hexagonal packing and hair formation, by modulating junction integrity via Yurt and stabilizing cell perimeter via both Yurt and Moesin. The Drosophila pupal wing thus appears as a useful system to investigate the functional diversification of the Crb complex during morphogenesis, independently of its role in polarity.


Subject(s)
Adherens Junctions/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Membrane Proteins/metabolism , Wings, Animal/growth & development , Actomyosin/chemistry , Adherens Junctions/metabolism , Animals , Cadherins/chemistry , Cell Polarity , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epithelium/growth & development , Epithelium/metabolism , Gene Expression Regulation, Developmental , Membrane Proteins/genetics , Morphogenesis , Mutation , Protein Stability , Pupa/genetics , Pupa/growth & development , Pupa/metabolism , Tissue Distribution , Wings, Animal/metabolism
15.
Sci Rep ; 7(1): 15383, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29133828

ABSTRACT

Acquisition of multicellularity is a central event in the evolution of Eukaryota. Strikingly, animal multicellularity coincides with the emergence of three intercellular communication pathways - Notch, TGF-ß and Wnt - all considered as hallmarks of metazoan development. By investigating Oopsacas minuta and Aphrocallistes vastus, we show here that the emergence of a syncytium and plugged junctions in glass sponges coincides with the loss of essential components of the Wnt signaling (i.e. Wntless, Wnt ligands and Disheveled), whereas core components of the TGF-ß and Notch modules appear unaffected. This suggests that Wnt signaling is not essential for cell differentiation, polarity and morphogenesis in glass sponges. Beyond providing a comparative study of key developmental toolkits, we define here the first case of a metazoan phylum that maintained a level of complexity similar to its relatives despite molecular degeneration of Wnt pathways.


Subject(s)
Models, Biological , Morphogenesis/physiology , Porifera , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway , Animals , Porifera/cytology , Porifera/physiology , Wnt Proteins/metabolism
16.
Sci Rep ; 6: 33259, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27624926

ABSTRACT

Polarity protein complexes function during polarized cell migration and a subset of these proteins localizes to the reoriented centrosome during this process. Despite these observations, the mechanisms behind the recruitment of these polarity complexes such as the aPKC/PAR6α complex to the centrosome are not well understood. Here we identify Hook2 as an interactor for the aPKC/PAR6α complex that functions to localize this complex at the centrosome. We first demonstrate that Hook2 is essential for the polarized Golgi re-orientation towards the migration front. Depletion of Hook2 results in a decrease of PAR6α at the centrosome during cell migration, while overexpression of Hook2 in cells induced the formation of aggresomes with the recruitment of PAR6α, aPKC and PAR3. In addition, we demonstrate that the interaction between the C-terminal domain of Hook2 and the aPKC-binding domain of PAR6α localizes PAR6α to the centrosome during cell migration. Our data suggests that Hook2, a microtubule binding protein, plays an important role in the regulation of PAR6α recruitment to the centrosome to bridge microtubules and the aPKC/PAR complex. This data reveals how some of the polarity protein complexes are recruited to the centrosome and might regulate pericentriolar and microtubule organization and potentially impact on polarized migration.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins/genetics , Cell Movement/genetics , Membrane Proteins/genetics , Microtubule-Associated Proteins/genetics , Protein Kinase C/genetics , Animals , Cell Polarity/genetics , Centrosome/metabolism , Chromosome Segregation/genetics , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Inclusion Bodies/genetics , MCF-7 Cells , Microtubules/genetics , Microtubules/metabolism , Protein Binding
17.
Sci Rep ; 6: 33420, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27624969

ABSTRACT

The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell.


Subject(s)
Cell Polarity , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Eye/cytology , Eye/metabolism , Models, Biological , Myosin Type II/metabolism
18.
Biol Cell ; 108(1): 19-28, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26526116

ABSTRACT

BACKGROUND INFORMATION: Microvillus inclusion disease (MVID) is a genetic disorder affecting intestinal absorption. It is caused by mutations in MYO5B or syntaxin 3 (STX3) affecting apical membrane trafficking. Morphologically, MVID is characterised by a depletion of apical microvilli and the formation of microvillus inclusions inside the cells, suggesting a loss of polarity. To investigate this hypothesis, we examined the location of essential apical polarity determinants in five MVID patients. RESULTS: We found that the polarity determinants Cdc42, Par6B, PKCζ/ι and the structural proteins ezrin and phospho-ezrin were lost from the apical membrane and accumulated either in the cytoplasm or on the basal side of enterocytes in patients, which suggests an inversion of cell polarity. Moreover, microvilli-like structures were observed at the basal side as per electron microscopy analysis. We next performed Myo5B depletion in three dimensional grown human Caco2 cells forming cysts and found a direct link between the loss of Myo5B and the mislocalisation of the same apical proteins; furthermore, we observed that a majority of cysts displayed an inverted polarity phenotype as seen in some patients. Finally, we found that this loss of polarity was specific for MVID: tissue samples of patients with Myo5B-independent absorption disorders showed normal polarity but we identified Cdc42 as a potentially essential biomarker for trichohepatoenteric syndrome. CONCLUSION: Our findings indicate that the loss of Myo5B induces a strong loss of enterocyte polarity, potentially leading to polarity inversion. SIGNIFICANCE: Our results show that polarity determinants could be useful markers to help establishing a diagnosis in patients. Furthermore, they could be used to characterise other rare intestinal absorption diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cell Polarity/physiology , Malabsorption Syndromes/metabolism , Microvilli/pathology , Mucolipidoses/metabolism , cdc42 GTP-Binding Protein/metabolism , Caco-2 Cells/metabolism , Enterocytes/metabolism , Humans , Malabsorption Syndromes/pathology , Microvilli/metabolism , Mucolipidoses/pathology , Mutation/genetics , Myosin Heavy Chains/metabolism , Myosin Type V/genetics , Myosin Type V/metabolism , Protein Transport/genetics , Protein Transport/physiology
19.
Genome Announc ; 3(5)2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26337883

ABSTRACT

While sequencing DNA purified from the homoscleromorph sponge Oscarella lobularis, we detected a large number of reads with strong similarity to available alphaproteobacteria gene sequences of family Rhodobacteraceae. Here, we present the genome sequence of this putative sponge symbiont that we propose to designate as "Candidatus Rhodobacter lobularis."

20.
Genome Announc ; 3(4)2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26227597

ABSTRACT

We report the complete mitochondrial genome sequence of the Mediterranean glass sponge Oopsacas minuta. This 19-kb mitochondrial genome has 24 noncoding genes (22 tRNAs and 2 rRNAs) and 14 protein-encoding genes coding for 11 subunits of respiratory chain complexes and 3 ATP synthase subunits.

SELECTION OF CITATIONS
SEARCH DETAIL
...