Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Stem Cell Res Ther ; 15(1): 77, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475970

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) can regenerate tissues through engraftment and differentiation but also via paracrine signalling via extracellular vesicles (EVs). Fetal-derived MSCs (fMSCs) have been shown, both in vitro and in animal studies, to be more efficient than adult MSC (aMSCs) in generating bone and muscle but the underlying reason for this difference has not yet been clearly elucidated. In this study, we aimed to systematically investigate the differences between fetal and adult MSCs and MSC-derived EVs at the phenotypic, RNA, and protein levels. METHODS: We carried out a detailed and comparative characterization of culture-expanded fetal liver derived MSCs (fMSCs) and adult bone marrow derived MSCs (aMSCs) phenotypically, and the MSCs and MSC-derived EVs were analysed using transcriptomics and proteomics approaches with RNA Sequencing and Mass Spectrometry. RESULTS: Fetal MSCs were smaller, exhibited increased proliferation and colony-forming capacity, delayed onset of senescence, and demonstrated superior osteoblast differentiation capability compared to their adult counterparts. Gene Ontology analysis revealed that fMSCs displayed upregulated gene sets such as "Positive regulation of stem cell populations", "Maintenance of stemness" and "Muscle cell development/contraction/Myogenesis" in comparison to aMSCs. Conversely, aMSCs displayed upregulated gene sets such as "Complement cascade", "Adipogenesis", "Extracellular matrix glycoproteins" and "Cellular metabolism", and on the protein level, "Epithelial cell differentiation" pathways. Signalling entropy analysis suggested that fMSCs exhibit higher signalling promiscuity and hence, higher potency than aMSCs. Gene ontology comparisons revealed that fetal MSC-derived EVs (fEVs) were enriched for "Collagen fibril organization", "Protein folding", and "Response to transforming growth factor beta" compared to adult MSC-derived EVs (aEVs), whereas no significant difference in protein expression in aEVs compared to fEVs could be detected. CONCLUSIONS: This study provides detailed and systematic insight into the differences between fMSCs and aMSCs, and MSC-derived EVs. The key finding across phenotypic, transcriptomic and proteomic levels is that fMSCs exhibit higher potency than aMSCs, meaning they are in a more undifferentiated state. Additionally, fMSCs and fMSC-derived EVs may possess greater bone forming capacity compared to aMSCs. Therefore, using fMSCs may lead to better treatment efficacy, especially in musculoskeletal diseases.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Transcriptome , Proteomics , Mesenchymal Stem Cells/metabolism , Gene Expression Profiling , Extracellular Vesicles/metabolism
2.
Cell Mol Immunol ; 20(6): 613-625, 2023 06.
Article in English | MEDLINE | ID: mdl-37165014

ABSTRACT

Graft versus host disease (GvHD) is the clinical condition in which bone marrow-derived mesenchymal stromal cells (MSCs) have been most frequently studied. In this review, we summarize the experience from clinical trials that have paved the way to translation. While MSC-based therapy has shown an exceptional safety profile, identifying potency assays and disease biomarkers that reliably predict the capacity of a specific MSC batch to alleviate GvHD has been difficult. As GvHD diagnosis and staging are based solely on clinical criteria, individual patients recruited in the same clinical trial may have vastly different underlying biology, obscuring trial outcomes and making it difficult to determine the benefit of MSCs in subgroups of patients. An accumulating body of evidence indicates the importance of considering not only the cell product but also patient-specific biomarkers and/or immune characteristics in determining MSC responsiveness. A mode of action where intravascular MSC destruction is followed by monocyte-efferocytosis-mediated skewing of the immune repertoire in a permissive inflammatory environment would both explain why cell engraftment is irrelevant for MSC efficacy and stress the importance of biologic differences between responding and nonresponding patients. We recommend a combined analysis of clinical outcomes and both biomarkers of disease activity and MSC potency assays to identify patients with GvHD who are likely to benefit from MSC therapy.


Subject(s)
Graft vs Host Disease , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Graft vs Host Disease/therapy , Monocytes
3.
Blood ; 142(1): 73-89, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37018663

ABSTRACT

Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.


Subject(s)
Bone Marrow , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Animals , Mice , Bone Marrow/metabolism , Chemokines, CXC/metabolism , Chemokines, CXC/pharmacology , Chemokines, CXC/therapeutic use , Cytokines/metabolism , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
4.
Leukemia ; 37(4): 888-900, 2023 04.
Article in English | MEDLINE | ID: mdl-36792657

ABSTRACT

Murine studies indicate that, after allogeneic haematopoietic stem cell transplantation (aHSCT), donor-derived macrophages replace damaged microglia and alloreactive T-cells invade the central nervous system (CNS). The clinical relevance of this is unknown. We assessed CNS immune surveillance and metabolic activity involved in neuronal survival, in relation to fatigue and cognitive dysfunction in 25 long-term survivors after aHSCT. Patients with cognitive dysfunction exhibited increased proportions of activated T-cells and CD16 + NK-cells in the cerebrospinal fluid (CSF). Immune cell activation was paralleled with reduced levels of anti-inflammatory factors involved in T-cell suppression (transforming growth factor-ß, programmed death ligand-1), NK-cell regulation (poliovirus receptor, nectin-2), and macrophage and microglia activation (CD200, chemokine [C-X3-C motif] ligand-1). Additionally, the CSF mRNA expression pattern was associated with neuroinflammation and oxidative stress. Furthermore, proteomic, and transcriptomic studies demonstrated decreased levels of neuroprotective factors, and an upregulation of apoptosis pathway genes. The kynurenine pathway of tryptophan metabolism was activated in the CNS of all aHSCT patients, resulting in accumulation of neurotoxic and pro-inflammatory metabolites. Cognitive decline and fatigue are overlooked but frequent complications of aHSCT. This study links post-transplant CNS inflammation and neurotoxicity to our previously reported hypoactivation in the prefrontal cortex during cognitive testing, suggesting novel treatment targets.


Subject(s)
Cognitive Dysfunction , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , Proteomics , Central Nervous System , Cognitive Dysfunction/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Fatigue
5.
Oral Dis ; 29(8): 3346-3359, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35796584

ABSTRACT

OBJECTIVE: Chronic graft-versus-host disease (cGVHD) is the main cause of late non-relapse mortality following hematopoietic cell transplantation. Oral mucosal (om-) cGVHD is common, but diagnosis and assessment rely on clinical interpretation and patient-reported symptoms. We investigated immunohistopathological profiles with respect to om-cGVHD severity disease duration. MATERIAL AND METHODS: Ninety-four transplant patients and 15 healthy controls (n = 212 biopsies) were investigated by quantitative immunohistochemistry for T cells (CD4, CD8, and CD5), B cells (CD19 and CD20), macrophages (CD68), and Langerhans cells (CD1a). RESULTS: We found significant increases in T (CD4, CD8) and monocytic (CD68) cells in om-cGVHD, and a notable absence of B (CD19 and CD20) cells. Histopathological activity correlated with increased CD4, CD8 and CD68. However, CD4 was associated with mild om-cGVHD, whereas CD8 and CD68 were found to be elevated in severe om-cGVHD. CD8 and CD68 levels were raised at disease onset, but during late phase, the predominant CD68 population was accompanied by CD4. CONCLUSION: Oral cGVHD is a heterogenous clinical disorder, but our knowledge of the underlying biology remains limited. We highlight the importance of CD4, CD8 and CD68 immune profiling, together with histological grading for the staging of oral cGVHD, to broaden our understanding of the biology and individual disease course.


Subject(s)
Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Mouth Mucosa/pathology , Chronic Disease
6.
Metabol Open ; 13: 100167, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35528374

ABSTRACT

Objective: Cell metabolism has been shown to play an active role in regulation of stemness and fate decision. In order to identify favorable culture conditions for mesenchymal stromal cells (MSCs) prior to transplantation, this study aimed to characterize the metabolic function of MSCs from different developmental stages in response to different oxygen tension during expansion. Materials and methods: We cultured human fetal cardiac MSCs and human adult bone-marrow MSCs for a week under hypoxia (3% O2) and normoxia (20% O2). We performed mitochondrial characterization and assessed oxygen consumption- and extracellular acidification-rates (OCR and ECAR) in addition to oxygen-sensitive respiration and mitochondrial complex activities, using both the Seahorse and Oroboros systems. Results: Adult and fetal MSCs displayed similar basal respiration and mitochondrial amount, however fetal MSCs had lower spare respiratory capacity and apparent coupling efficiency. Fetal MSCs expanded in either hypoxia or normoxia demonstrated similar acidification rates, while adult MSCs downregulated their aerobic glycolysis in normoxia. Acute decrease in oxygen tension caused a higher respiratory inhibition in adult compared to fetal MSCs. In both sources of MSCs, minor changes in complex activities in normoxic and hypoxic cultures were found. Conclusions: In contrast to adult MSCs, fetal MSCs displayed similar respiration and aerobic glycolysis at different O2 culture concentrations during expansion. Adult MSCs adjusted their respiration to glycolytic activities, depending on the culture conditions thus displaying a more mature metabolic function. These findings are relevant for establishing optimal in vitro culturing conditions, with the aim to maximize engraftment and therapeutic outcome.

7.
Cytotherapy ; 24(8): 774-788, 2022 08.
Article in English | MEDLINE | ID: mdl-35613962

ABSTRACT

The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.


Subject(s)
Critical Illness , Lung Diseases , Cell- and Tissue-Based Therapy , Critical Illness/therapy , Genetic Therapy , Humans , Lung Diseases/genetics , Lung Diseases/therapy , Stem Cells
8.
Bone Marrow Transplant ; 57(3): 360-369, 2022 03.
Article in English | MEDLINE | ID: mdl-34864824

ABSTRACT

Long-term fatigue and cognitive dysfunction affects 35% of allogeneic haematopoietic stem cell transplantation (aHSCT) survivors, suggesting a dysfunctional prefrontal cortex. In this study, we assessed prefrontal cortex and sympathetic nervous system activity in aHSCT patients with fatigue (n = 12), non-fatigued patients (n = 12) and healthy controls (n = 27). Measurement of near-infrared spectroscopy and electrodermal activity was carried out at rest and during cognitive performance (Stroop, verbal fluency and emotion regulation tasks). Prefrontal cortex and sympathetic nervous system activity were also analyzed in response to dopamine and noradrenaline increase after a single dose of methylphenidate. Baseline cognitive performance was similar in the two patient groups. However, after methylphenidate, only non-fatigued patients improved in Stroop accuracy and had better verbal fluency task performance compared to the fatigued group. Task-related activation of prefrontal cortex in fatigued patients was lower compared to non-fatigued patients during all cognitive tests, both before and after methylphenidate administration. During the Stroop task, reaction time, prefrontal cortex activation, and sympathetic nervous system activity were all lower in fatigued patients compared to healthy controls, but similar in non-fatigued patients and healthy controls.Reduced prefrontal cortex activity and sympathetic arousal suggests novel treatment targets to improve fatigue after aHSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Prefrontal Cortex , Fatigue/etiology , Humans , Neuropsychological Tests , Sympathetic Nervous System
9.
Cell Stem Cell ; 28(10): 1708-1725, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624232

ABSTRACT

An exceptional safety profile has been shown in a large number of cell therapy clinical trials that use mesenchymal stromal cells (MSCs). However, reliable potency assays are still lacking to predict MSC immunosuppressive efficacy in the clinical setting. Nevertheless, MSCs are approved in Japan and Europe for the treatment of graft-versus-host and Crohn's fistular diseases, but not in the United States for any clinical indication. We discuss potential mechanisms of action for the therapeutic effects of MSC transplantation, experimental models that dissect tissue modulating function of MSCs, and approaches for identifying MSC effects in vivo by integrating biomarkers of disease and MSC activity.


Subject(s)
Graft vs Host Disease , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Biomarkers , Cell- and Tissue-Based Therapy , Graft vs Host Disease/therapy , Humans , Japan
10.
Cytotherapy ; 23(12): 1060-1063, 2021 12.
Article in English | MEDLINE | ID: mdl-34116944

ABSTRACT

The Cellular Therapy Coding and Labeling Advisory Group of the International Council for Commonality in Blood Banking Automation and the International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee are providing specific recommendations on abbreviating tissue sources of culture-adapted MSCs. These recommendations include using abbreviations based on the ISBT 128 terminology model that specifies standard class names to distinguish cell types and tissue sources for culture-adapted MSCs. Thus, MSCs from bone marrow are MSC(M), MSCs from cord blood are MSC(CB), MSCs from adipose tissue are MSC(AT) and MSCs from Wharton's jelly are MSC(WJ). Additional recommendations include using these abbreviations through the full spectrum of pre-clinical, translational and clinical research for the development of culture-adapted MSC products. This does not apply to basic research focused on investigating the developmental origins, identity or functionalities of endogenous progenitor cells in different tissues. These recommendations will serve to harmonize nomenclature in describing research and development surrounding culture-adapted MSCs, many of which are destined for clinical and/or commercial translation. These recommendations will also serve to align research and development efforts on culture-adapted MSCs with other cell therapy products.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Automation , Blood Banks , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy , Cells, Cultured , Consensus , Genetic Therapy
11.
Stem Cells Transl Med ; 9(10): 1190-1202, 2020 10.
Article in English | MEDLINE | ID: mdl-32573983

ABSTRACT

Steroid-refractory chronic graft-vs-host disease (cGvHD) contributes to morbidity after allogeneic hematopoietic stem cell transplantation. Here, we report on 11 patients with severe, refractory cGvHD treated with repeated infusions of allogeneic bone marrow-derived mesenchymal stromal cells (MSC) over a 6- to 12-month period. Six patients responded to MSC treatment following National Institutes of Health response criteria, accompanied by improvement in GvHD-related symptoms and quality of life. This response was durable, with systemic immunosuppressive therapy withdrawn from two responders, and a further two free from steroids and tapering calcineurin inhibitors. All responders displayed a distinct immune phenotype characterized by higher levels of naïve T cells and B cells before treatment compared with the nonresponders, and a significantly higher fraction of CD31+ naïve CD4+ T cells. MSC treatment was associated with significant increases in naïve T cells, B cells, and Tregs 7 days after each infusion. Skin biopsies showed resolution of epidermal pathology. CXCL9 and CXCL10 showed differential responses in responder and nonresponder patients. Our data support the use of MSC infusions as treatment for steroid-refractory cGvHD with durable responses. We propose CXCL9 and CXCL10 as early biomarkers for responsiveness to MSC treatment. Our results highlight the importance of the MSC recipient immune phenotype in promoting treatment response. This trial was registered at www.ClinicalTrials.gov as #NCT01522716.


Subject(s)
Mesenchymal Stem Cells/metabolism , Adult , Chronic Disease , Female , Graft vs Host Disease , Humans , Male , Middle Aged , Young Adult
13.
Laryngoscope ; 130(1): E21-E29, 2020 01.
Article in English | MEDLINE | ID: mdl-30835853

ABSTRACT

OBJECTIVES/HYPOTHESIS: This study aimed to determine whether local injection of human mesenchymal stromal cells (MSC) could modulate the early inflammatory response within injured vocal folds (VFs) to promote wound-healing processes. STUDY DESIGN: Experimental xenograft model. METHODS: VF injury was surgically induced by bilateral resection of the lamina propria of rabbits, and MSC were immediately injected into the injured area of both VFs. Animals were sacrificed on days 2, 4, and 24. Histological analyses were performed by hematoxylin and eosin, Masson's Trichrome, and elastin staining. Cell death was visualized by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and the M2 macrophage marker, CD163, detected by immunohistochemistry. Persistence of injected MSC was evaluated by fluorescent in situ hybridization (FISH). Quantitative polymerase chain reaction was performed on the contralateral VF. RESULTS: Histological examination at days 2 and 4 indicated that MSC were able to reduce tissue inflammation, with gene expression analysis confirming a significant reduction of proinflammatory markers, interleukin (IL)-1ß, and IL-8. FISH demonstrated low-level persistence of injected MSC at both time points, and TUNEL confirmed localized cell death at the injury site. Increased levels of CD163+ anti-inflammatory macrophages indicated a change in the immune milieu, supporting wound resolution. Evidence of a more organized collagen matrix suggests that MSC may enhance the production of a functional repair tissue after injury, despite their low-level persistence within the tissue. CONCLUSIONS: This study demonstrates that MSC are able to positively modulate the early wound-healing response through resolution of the inflammatory phase and promotion of tissue repair. LEVEL OF EVIDENCE: NA Laryngoscope, 130:E21-E29, 2020.


Subject(s)
Mesenchymal Stem Cells/physiology , Vocal Cords/surgery , Wound Healing/physiology , Animals , Cicatrix/pathology , Disease Models, Animal , Humans , Rabbits
15.
Stem Cell Res Ther ; 10(1): 334, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31747938

ABSTRACT

Acute graft-versus-host disease (aGvHD), post-allogeneic hematopoietic stem cell transplantation, is associated with high mortality rates in patients not responding to standard line care with steroids. Adoptive mesenchymal stromal cell (MSC) therapy has been established in some countries as a second-line treatment.Limitations in our understanding as to MSC mode of action and what segregates patient responders from non-responders to MSC therapy remain. The principal aim of this study was to evaluate the immune cell profile in gut biopsies of patients diagnosed with aGvHD and establish differences in baseline cellular composition between responders and non-responders to subsequent MSC therapy.Our findings indicate that a pro-inflammatory immune profile within the gut at the point of MSC treatment may impede their therapeutic potential. These findings support the need for further validation in a larger cohort of patients and the development of improved biomarkers in predicting responsiveness to MSC therapy.


Subject(s)
Graft vs Host Disease , Intestinal Diseases , Mesenchymal Stem Cell Transplantation , Acute Disease , Adolescent , Adult , Aged , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation , Humans , Intestinal Diseases/etiology , Intestinal Diseases/immunology , Intestinal Diseases/mortality , Intestinal Diseases/therapy , Male , Middle Aged , Neoplasms/immunology , Neoplasms/mortality , Neoplasms/therapy , Prospective Studies , Transplantation, Homologous
16.
Front Immunol ; 10: 2249, 2019.
Article in English | MEDLINE | ID: mdl-31616424

ABSTRACT

Mesenchymal stromal cell (MSC) therapy is a promising tool in the treatment of chronic inflammatory diseases. This has been ascribed to the capacity of MSC to release a large variety of immune-modulatory factors. However, all aspects of the mode of therapeutic MSC action in different diseases remain unresolved, mainly because most of the infused MSC are undetectable in the circulation within hours after infusion. The aim of this study was to elucidate the fate of MSC after contact with plasma. We found that upon contact with blood, complement proteins including C3b/iC3b are deposited on MSC. Importantly, we also found that complement bound to MSC enhanced their phagocytosis by classical and intermediate monocytes via a mechanism that involves C3 but not C5. Thus, we describe for the first time a mechanism which might explain, at least partly, why MSC are not found in the blood circulation after infusion. Our results indicate that MSC immune-modulatory effects could be mediated by monocytes that have phagocytosed them.


Subject(s)
Complement System Proteins/immunology , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Phagocytosis/immunology , Complement C3b/immunology , Humans
17.
Stem Cells Dev ; 28(17): 1177-1190, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31244387

ABSTRACT

Mesenchymal stromal cells (MSCs) promote wound healing by expediting the inflammatory phase. Local injection of MSCs into injured vocal folds (VFs) is effective in animal models, suggesting suitability for clinical translation. Despite their therapeutic potential, MSCs do not persist within the VF. This study evaluates whether hyaluronan (HA) hydrogels offer a safe delivery vehicle for local injection of MSCs into VFs, and increase longevity of the cells within the injured tissue. MSCs ± HA hydrogel were exposed to interleukin (IL)1ß, IL8, and chemokine (C-C motif) ligand 4, and evaluated for mRNA expression of matrix remodeling genes and secretion of immunomodulatory/prohealing factors. Chemotaxis/invasion in response to inflammation was evaluated. A lapin model of VF injury evaluated in vivo effects of MSCs ± HA hydrogel on enhancing VF healing. Histological evaluation of inflammation, type I collagen expression, HA hydrogel resorption, and MSC persistence was evaluated at 3 and 25 days after injury. MSCs within HA hydrogel were responsive to their extracellular environment, upregulating immunomodulatory factors when exposed to inflammation. Despite delayed migration out of the gel in vitro, the MSCs did not persist longer within the injured tissue in vivo. MSCs ± HA hydrogel exerted equivalent dampening of inflammation in vivo. The gel was resorbed within 25 days and no edema was evident. HA hydrogels can be safely used in the delivery of MSCs to injured VFs, minimizing leakage of administered cells. MSCs within the HA hydrogel did not persist longer than those in suspension, but did exert comparable therapeutic effects.


Subject(s)
Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Laryngeal Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/drug effects , Vocal Cords/injuries , Animals , Cells, Cultured , Chemokine CCL4/genetics , Chemokine CCL4/metabolism , Chemotaxis , Collagen/genetics , Collagen/metabolism , Humans , Hyaluronic Acid/analogs & derivatives , Hydrogels/chemistry , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Rabbits , Tissue Scaffolds/adverse effects , Tissue Scaffolds/chemistry
18.
Sci Transl Med ; 11(480)2019 02 20.
Article in English | MEDLINE | ID: mdl-30787168

ABSTRACT

Clinical trials of mesenchymal stromal cell therapies reveal a challenging heterogeneous landscape, including diverse therapeutic targets, patient categories, cell sources, and potential mechanisms of action.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Clinical Trials as Topic , Humans , Immunomodulation
20.
Eur J Haematol ; 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30084111

ABSTRACT

OBJECTIVE: No standard second-line treatment exists for acute graft-versus-host disease steroid-refractory (SR-aGvHD), and long-term outcomes remain poor. Mesenchymal stromal cells (MSCs) have been evaluated as treatment, but no disease model (DM) exists that integrates and extrapolates currently available evidence. The aim of this study was to develop such a DM to describe the natural history of SR-aGvHD and to predict long-term outcomes. METHOD: The DM was developed in collaboration with experts in haematology-oncology. Subsequently, a model simulation was run. Input parameters for transition and survival estimates were informed by published data of clinical trials on MSC treatment for SR-aGvHD. Parametric distributions were used to estimate long-term survival rates after MSCs. RESULTS: The newly developed DM is a cohort model that consists of eight health states. For the model simulation, we obtained data on 327 patients from 14 published phase II trials. Due to limited evidence, DM structure was simplified and several assumptions had to be made. Median overall survival was 3.2 years for complete response and 0.5 years for no complete response. CONCLUSION: The DM provides a comprehensive overview on the second-line treatment pathway for aGvHD and enables long-term predictions that can be used to perform a cost-effectiveness analysis comparing any treatment for SR-aGvHD.

SELECTION OF CITATIONS
SEARCH DETAIL
...