Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 45(3): 2491-2504, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36975533

ABSTRACT

Plasma membrane-derived vesicles, also referred to as large extracellular vesicles (lEVs), are implicated in several pathophysiological situations, including cancer. However, to date, no studies have evaluated the effects of lEVs isolated from patients with renal cancer on the development of their tumors. In this study, we investigated the effects of three types of lEVs on the growth and peritumoral environment of xenograft clear cell renal cell carcinoma in a mouse model. Xenograft cancer cells were derived from patients' nephrectomy specimens. Three types of lEVs were obtained from pre-nephrectomy patient blood (cEV), the supernatant of primary cancer cell culture (sEV) and from blood from individuals with no medical history of cancer (iEV). Xenograft volume was measured after nine weeks of growth. Xenografts were then removed, and the expression of CD31 and Ki67 were evaluated. We also measured the expression of MMP2 and Ca9 in the native mouse kidney. lEVs from kidney cancer patients (cEV and sEV) tend to increase the size of xenografts, a factor that is related to an increase in vascularization and tumor cell proliferation. cEV also altered organs that were distant from the xenograft. These results suggest that lEVs in cancer patients are involved in both tumor growth and cancer progression.

2.
Bull Cancer ; 110(2): 160-167, 2023 Feb.
Article in French | MEDLINE | ID: mdl-36379731

ABSTRACT

INTRODUCTION: Partial nephrectomy is the treatment of choice for small localized renal tumors. In case of doubt, a biopsy can confirm the diagnosis. The aim of this study was to evaluate the impact of a delayed time to partial nephrectomy on cancer development. MATERIALS AND METHODS: Our single center study enrolled localized renal tumor patients who underwent a partial nephrectomy between 2015 and 2020; the collected data were included in the uroCCR prospective database. The histopathological stage of the tumors and the recurrence rate in patients treated with surgery >90 days after diagnosis were investigated. The impact a preoperative biopsy on was also explored. Statistical significance was tested using Student's t-test and Chi-squared test (SPSS software). RESULTS: The cohort consisted of 179 patients, among which 41 (23 %) received a preoperative biopsy. 89 patients (50 %) were treated surgically >3 months after diagnosis. The median time to nephrectomy was 86 days (13-1 037). A delayed time to surgery did not lead to significantly higher recurrence rates (P=0.66). Preoperative biopsy led to a doubling time to surgery (P<0.001) but was neither correlated to a more severe tumor stage (P=0.944) nor to a higher recurrence rate (P=0.08). Tumor growth was not significantly different with or without the presence of a biopsy (P=0.122). CONCLUSION: Our data evidence that a substantial delayed time to partial nephrectomy does not result in a negative impact on cancer prognosis in localized renal tumor patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/pathology , Retrospective Studies , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Nephrectomy , Kidney/surgery , Kidney/pathology
3.
ACS Energy Lett ; 6(3): 1087-1094, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33869770

ABSTRACT

Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal.

4.
Microsc Microanal ; 27(1): 20-27, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33267931

ABSTRACT

We propose a method to measure the local porosity of porous samples from scanning electron microscopy images in the backscattered electron mode. The porous samples are impregnated with a polymer resin and observed in polished cross sections. Image intensities are calibrated with intensities from pure resin and the bulk phase. The calibration model is justified with Monte Carlo simulations on perfectly homogeneous virtual samples. Uncertainties in measured porosity are given as a function of uncertainties on physical properties of the resin and the bulk phase and on measured signals. The methodology is applied to a series of heterogeneous alumina catalyst supports with varying porosities. A good agreement is found between the averaged local porosity by scanning electron microscopy and global porosity determined by mercury intrusion porosimetry. The use of local porosity statistics allowed the quantitative characterization of the porosity fluctuations of these supports that appeared to be linked with their preparation parameters.

5.
ACS Appl Mater Interfaces ; 12(50): 56231-56239, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33270414

ABSTRACT

Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers' behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers' recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs.

6.
Nat Commun ; 11(1): 5220, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060574

ABSTRACT

The short exciton diffusion length associated with most classical organic semiconductors used in organic photovoltaics (5-20 nm) imposes severe limits on the maximum size of the donor and acceptor domains within the photoactive layer of the cell. Identifying materials that are able to transport excitons over longer distances can help advancing our understanding and lead to solar cells with higher efficiency. Here, we measure the exciton diffusion length in a wide range of nonfullerene acceptor molecules using two different experimental techniques based on photocurrent and ultrafast spectroscopy measurements. The acceptors exhibit balanced ambipolar charge transport and surprisingly long exciton diffusion lengths in the range of 20 to 47 nm. With the aid of quantum-chemical calculations, we are able to rationalize the exciton dynamics and draw basic chemical design rules, particularly on the importance of the end-group substituent on the crystal packing of nonfullerene acceptors.

7.
Adv Sci (Weinh) ; 6(9): 1802028, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31065524

ABSTRACT

The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single-junction and two-terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single-junction and two-terminal tandem NFA-based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single-junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10-3 cm2 V-1 s-1 in combination with low nongeminate recombination rate constants of 10-12 cm3 s-1 could lead to PCE values in excess of 20% and 25% for single-junction and two-terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single-junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics.

8.
ACS Appl Mater Interfaces ; 11(8): 8310-8318, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30701959

ABSTRACT

Recently, the advent of non-fullerene acceptors (NFAs) made it possible for organic solar cells (OSCs) to break the 10% efficiency barrier hardly attained by fullerene acceptors (FAs). In the past five years alone, more than hundreds of NFAs with applications in organic photovoltaics (OPVs) have been synthesized, enabling a notable current record efficiency of above 15%. Hence, there is a shift in interest toward the use of NFAs in OPVs. However, there has been little work on the stability of these new materials in devices. More importantly, there is very little comparative work on the photostability of FA versus NFA solar cells to ascertain the pros and cons of the two systems. Here, we show the photostability of solar cells based on two workhorse acceptors, in both conventional and inverted structures, namely, ITIC (as NFA) and [70]PCBM (as FA), blended with either PBDB-T or PTB7-Th polymer. We found that, irrespective of the polymer, the cell structure, or the initial efficiency, the [70]PCBM devices are more photostable than the ITIC ones. This observation, however, opposes the assumption that NFA solar cells are more photochemically stable. These findings suggest that complementary absorption should not take precedence in the design rules for the synthesis of new molecules and there is still work left to be done to achieve stable and efficient OSCs.

9.
ACS Appl Mater Interfaces ; 10(14): 12013-12020, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29546982

ABSTRACT

In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated charges or the recombination of photogenerated charges and electrodic induced charges (EICs). This work studies the impact of EICs on the recombination lifetime in OSCs. To this end, the net recombination lifetime of photogenerated charge carriers in the presence of EICs is measured by means of conventional and newly developed transient photovoltage techniques. Moreover, a new approach has been introduced to exclusively measure the bulk recombination lifetime, i.e., in the absence of EICs; this approach was conducted by depositing transparent insulating layers on both sides of the OSC active layer. An examination of these approaches on OSCs with different active layer materials, thicknesses, and varying light intensities determined that the EICs can only reduce the recombination lifetime of the photogenerated charges in OSCs with very weak recombination strength. This work supports that for OSCs with highly reduced recombination strength, eliminating the recombination of photogenerated charges and EICs is critical for achieving better performance. Therefore, the use of a proper blocking layer suppresses EIC recombination in systems with very weak recombination.

10.
ACS Appl Mater Interfaces ; 9(32): 27290-27297, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28745040

ABSTRACT

The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

11.
Adv Mater ; 28(17): 3366-73, 2016 05.
Article in English | MEDLINE | ID: mdl-26946165

ABSTRACT

Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V. The high-voltage homo-tandem is used to demonstrate PV-driven electrochemical water splitting with an estimated solar-to-hydrogen conversion efficiency of ≈6%.

12.
Chemistry ; 20(6): 1569-76, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24402683

ABSTRACT

Herein, we provide some structural evidence of the complexation color-change of murexide solutions in presence of lanthanide, which has been used for decades in complexometric studies. For Ln = Sm to Lu and Y, the compounds crystallize as monomeric [Ln(Murex)3]⋅11 H2O with an N3O6 tricapped square-antiprism environment, which are stable up to 250 °C. Single-ion magnet (SIM) behavior is then observed on the Yb(III) derivative in an original nine-coordinated environment. In-field slow relaxation (Δ = (15.6±1) K; τ0 = 2.73×10(-6) s) is observed with a very narrow distribution of the relaxation time (αmax = 0.09). Magnetic and photophysical properties can be correlated. On one hand the analysis of NIR emission spectrum permits to have access to crystal field parameters and to compare them with those extracted from dc measurements. On the other hand, magnetic measurements permit to identify the nature of the MJ states involved in the (2)F5/2 → (2)F7/2 luminescence spectrum. The gap between the low-lying states is in agreement with the energy barrier obtained from magnetic slow-relaxation measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...