Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 16(10): e1009000, 2020 10.
Article in English | MEDLINE | ID: mdl-33075106

ABSTRACT

CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in people, nonhuman primates, and mice, which is encoded by the esxH gene. In C57BL/6 mice, 30-50% of pulmonary CD8 T cells recognize the TB10.44-11 epitope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur in lineage 1 strains, to test this "decoy hypothesis". Using the clinical isolate 667, which contains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymorphism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best explained by immunodomination, a mechanism by which competition for APC leads to dominant responses suppressing subdominant responses. These results were surprising as the variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic degradation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymorphism affected T cell priming and recognition of infected cells. These data support a model in which nonprotective CD8 T cells become immunodominant and suppress subdominant responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv sequence-based vaccines could lead to a mismatch between T cells that are primed by vaccines and the epitopes presented by infected cells. Reprograming host immune responses should be considered in the future design of vaccines.


Subject(s)
Antigens, Bacterial/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Animals , Antigens, Bacterial/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Mice , Mice, Inbred C57BL , Tuberculosis/immunology
2.
PLoS Pathog ; 16(3): e1008442, 2020 03.
Article in English | MEDLINE | ID: mdl-32196533

ABSTRACT

Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV.


Subject(s)
Antigen Presentation , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/physiology , Histone Deacetylase Inhibitors/pharmacology , Protein Kinase C/antagonists & inhibitors , Virus Latency/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , HIV Infections/drug therapy , HIV Infections/pathology , Humans , Protein Kinase C/immunology , Virus Latency/immunology
4.
Nat Immunol ; 20(7): 824-834, 2019 07.
Article in English | MEDLINE | ID: mdl-31209403

ABSTRACT

Multiple genome-wide studies have identified associations between outcome of human immunodeficiency virus (HIV) infection and polymorphisms in and around the gene encoding the HIV co-receptor CCR5, but the functional basis for the strongest of these associations, rs1015164A/G, is unknown. We found that rs1015164 marks variation in an activating transcription factor 1 binding site that controls expression of the antisense long noncoding RNA (lncRNA) CCR5AS. Knockdown or enhancement of CCR5AS expression resulted in a corresponding change in CCR5 expression on CD4+ T cells. CCR5AS interfered with interactions between the RNA-binding protein Raly and the CCR5 3' untranslated region, protecting CCR5 messenger RNA from Raly-mediated degradation. Reduction in CCR5 expression through inhibition of CCR5AS diminished infection of CD4+ T cells with CCR5-tropic HIV in vitro. These data represent a rare determination of the functional importance of a genome-wide disease association where expression of a lncRNA affects HIV infection and disease progression.


Subject(s)
Gene Expression Regulation , Genetic Variation , HIV Infections/genetics , HIV Infections/virology , HIV-1 , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Receptors, CCR5/genetics , 3' Untranslated Regions , Alleles , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Membrane/metabolism , Genes, Reporter , Genotype , HIV Infections/metabolism , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Population Groups/genetics , Prognosis , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR5/metabolism , Viral Load
5.
Cell Rep ; 27(1): 142-153.e4, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30943397

ABSTRACT

Even with sustained antiretroviral therapy, resting CD4+ T cells remain a persistent reservoir of HIV infection, representing a critical barrier to curing HIV. Here, we demonstrate that CD8+ T cells recognize infected, non-activated CD4+ T cells in the absence of de novo protein production, as measured by immune synapse formation, degranulation, cytokine production, and killing of infected cells. Immune recognition is induced by HLA-I presentation of peptides derived from incoming viral particles, and recognition occurred either following cell-free virus infection or following cell-to-cell spread. CD8+ T cells from HIV controllers mediate more effective immune recognition than CD8+ T cells from progressors. These results indicate that non-activated HIV-infected CD4+ T cells can be targeted by CD8+ T cells directly after HIV entry, before reverse transcription, and thus before the establishment of latency, and suggest a mechanism whereby the immune response may reduce the size of the HIV reservoir.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/pathology , HIV-1/immunology , Immunity, Cellular/physiology , CD8-Positive T-Lymphocytes/pathology , Cells, Cultured , Disease Progression , HEK293 Cells , HIV Infections/therapy , HIV Infections/virology , HIV-1/physiology , HeLa Cells , Humans , Lymphocyte Activation/physiology , Viral Load/drug effects , Viral Load/immunology , Virus Replication/physiology
6.
J Immunol ; 202(10): 2856-2872, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30936293

ABSTRACT

CD4 T cell activation is critical to the initiation of adaptive immunity. CD4 T cells are also the main targets of HIV infection, and their activation status contributes to the maintenance and outcome of infection. Although the role of activation in the differentiation and proliferation of CD4 T cells is well studied, its impact on the processing and MHC class I (MHC-I) presentation of epitopes and immune recognition by CD8 T cells are not investigated. In this study, we show that the expression and hydrolytic activities of cellular peptidases are increased upon TCR-dependent and MHC-peptide activation of primary CD4 T cells from healthy or HIV-infected persons. Changes in peptidase activities altered the degradation patterns of HIV Ags analyzed by mass spectrometry, modifying the amount of MHC-I epitopes produced, the antigenicity of the degradation products, and the coverage of Ags by degradation peptides presentable by MHC-I. The computational analysis of 2237 degradation peptides generated during the degradation of various HIV-antigenic fragments in CD4 T cells identified cleavage sites that were predictably enhanced, reduced, or unchanged upon cellular activation. Epitope processing and presentation by CD4 T cells may be modulated by the activation state of cells in a sequence-dependent manner. Accordingly, cellular activation modified endogenous Ag processing and presentation and killing of HIV-infected CD4 T cells by CD8 T cells in a way that mirrored differences in in vitro epitope processing. The clearance of HIV-infected cells may rely on different immune responses according to activation state during HIV infection.


Subject(s)
Antigen Presentation , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , Histocompatibility Antigens Class I/immunology , Adult , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Female , HIV Infections/pathology , Humans , Male , Middle Aged
7.
Mol Immunol ; 113: 67-74, 2019 09.
Article in English | MEDLINE | ID: mdl-29636181

ABSTRACT

The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.


Subject(s)
Antigen Presentation/immunology , HIV Infections/immunology , HIV-1/immunology , AIDS Vaccines/immunology , Animals , Histocompatibility Antigens/immunology , Humans
8.
J Immunol ; 199(11): 3892-3899, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29055006

ABSTRACT

Genomic variation in the untranslated region (UTR) has been shown to influence HLA class I expression level and associate with disease outcomes. Sequencing of the 3'UTR of common HLA-A alleles indicated the presence of two polyadenylation signals (PAS). The proximal PAS is conserved, whereas the distal PAS is disrupted within certain alleles by sequence variants. Using 3'RACE, we confirmed expression of two distinct forms of the HLA-A 3'UTR based on use of either the proximal or the distal PAS, which differ in length by 100 bp. Specific HLA-A alleles varied in the usage of the proximal versus distal PAS, with some alleles using only the proximal PAS, and others using both the proximal and distal PAS to differing degrees. We show that the short and the long 3'UTR produced similar mRNA expression levels. However, the long 3'UTR conferred lower luciferase activity as compared with the short form, indicating translation inhibition of the long 3'UTR. RNA affinity pull-down followed by mass spectrometry analysis as well as RNA coimmunoprecipitation indicated differential binding of Syncrip to the long versus short 3'UTR. Depletion of Syncrip by small interfering RNA increased surface expression of an HLA-A allotype that uses primarily the long 3'UTR, whereas an allotype expressing only the short form was unaffected. Furthermore, specific blocking of the proximal 3'UTR reduced surface expression without decreasing mRNA expression. These data demonstrate HLA-A allele-specific variation in PAS usage, which modulates their cell surface expression posttranscriptionally.


Subject(s)
3' Untranslated Regions/genetics , HLA-A Antigens/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Protein Isoforms/genetics , RNA Splice Sites/genetics , RNA-Binding Motifs/genetics , Gene Expression Regulation , Genotype , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Jurkat Cells , Polyadenylation , Polymorphism, Genetic , Protein Binding , RNA Processing, Post-Transcriptional , RNA, Small Interfering/genetics
9.
J Virol ; 90(19): 8605-20, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27440904

ABSTRACT

UNLABELLED: Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE: The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity.


Subject(s)
Antigen Presentation , Epitopes, T-Lymphocyte/immunology , HIV Antigens/analysis , HIV/immunology , Histocompatibility Antigens/chemistry , Peptides/analysis , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Epithelial Cells/immunology , Humans
10.
J Immunol ; 196(9): 3595-607, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27009491

ABSTRACT

Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells, but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation, the process by which pathogen Ags are internalized, degraded, and presented by MHC class I, is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article, we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs, dendritic cells and macrophages, and CD4 T cells, three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities, reducing NADPH oxidase 2 activation, and lowering phagolysosomal reactive oxygen species production and pH, which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification, to our knowledge, of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.


Subject(s)
Antigen Presentation/drug effects , Cathepsins/metabolism , Cross-Priming/drug effects , HIV Protease Inhibitors/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/drug effects , Dendritic Cells/enzymology , Dendritic Cells/immunology , Dendritic Cells/virology , Endosomes/drug effects , Endosomes/immunology , Endosomes/physiology , Epitopes, T-Lymphocyte/drug effects , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Hydrolysis/drug effects , Macrophages/drug effects , Macrophages/enzymology , Macrophages/immunology , Macrophages/virology , Membrane Glycoproteins/metabolism , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
11.
PLoS Pathog ; 12(2): e1005421, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26828202

ABSTRACT

Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94(+) NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94(+) NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL(+) CD56(dim) NK cells, in contrast to the efficient responses by CD56(bright) NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94(+) KIR2DL(-) NK cells may be uniquely beneficial.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA-C Antigens/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Humans , NK Cell Lectin-Like Receptor Subfamily D/immunology , Peptides/immunology , Receptors, Natural Killer Cell/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , HLA-E Antigens
12.
J Immunol ; 195(11): 5327-36, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26519527

ABSTRACT

Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.


Subject(s)
Dendritic Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon-alpha/biosynthesis , Sex Characteristics , Toll-Like Receptor 7/metabolism , Animals , Cells, Cultured , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/pharmacology , Interferon-alpha/metabolism , Male , Mice , Mice, Transgenic , RNA, Messenger/biosynthesis , Recombinant Proteins/pharmacology , Signal Transduction/genetics
13.
Food Sci Nutr ; 3(4): 273-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26288719

ABSTRACT

Ara h 1 is a major peanut allergen. Processing-induced modifications may modulate the allergenic potency of Ara h 1. Carboxymethyl lysine (CML) modifications are a commonly described nonenzymatic modification on food proteins. In the current study, we tested the ability of digestive and endolysosomal proteases to cleave CML-modified and unmodified Ara h 1 peptides. Mass spectrometric analyses of the digested peptides demonstrate that carboxymethylation of lysine residues renders these peptides refractory to trypsin digestion. We did not detect observable differences in the simulated gastric fluid or endolysosomal digestion between the parental and CML-modified peptides. One of the tested peptides contains a lysine residue previously shown to be CML modified laying in a previously mapped linear IgE epitope, but we did not observe a difference in IgE binding between the modified and parental peptides. Our findings suggest a molecular mechanism for the increased resistance of peanut allergens modified by thermal processing, such as Ara h 1, to digestion in intestinal fluid after heating and could help explain how food processing-induced modifications may lead to more potent food allergens by acting to protect intact IgE epitopes from digestion by proteases targeting lysine residues.

14.
PLoS Pathog ; 11(3): e1004725, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25781895

ABSTRACT

Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8⁺ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.


Subject(s)
Cross-Priming/immunology , Dendritic Cells/immunology , HIV-1/immunology , Immune Evasion/immunology , Macrophages/immunology , T-Lymphocytes, Cytotoxic/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , Humans , Immunodominant Epitopes/immunology , Mass Spectrometry
15.
Viruses ; 6(8): 3271-92, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25196483

ABSTRACT

The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.


Subject(s)
Antigen Presentation , Epitopes/metabolism , HIV Antigens/metabolism , HIV/immunology , Human Immunodeficiency Virus Proteins/metabolism , AIDS Vaccines/immunology , AIDS Vaccines/metabolism , Epitopes/immunology , HIV Antigens/immunology , Human Immunodeficiency Virus Proteins/immunology , Humans , Proteolysis
16.
J Immunol ; 193(9): 4322-4334, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25230751

ABSTRACT

Dendritic cells (DCs), macrophages (MPs), and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous Ags preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum translocation, trimming, and MHC-I presentation. In this study, we compared the capacity of DCs, MPs, and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848, and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs, and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs, and monocytes. Differences in Ag-processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load.


Subject(s)
Antigen Presentation/immunology , Dendritic Cells/immunology , Epitopes/immunology , HIV Infections/immunology , HIV/immunology , Macrophages/immunology , Monocytes/immunology , T-Lymphocytes, Cytotoxic/immunology , Amino Acid Sequence , Animals , Antigens, Surface/metabolism , Cell Line, Transformed , Cytosol/immunology , Cytosol/metabolism , Dendritic Cells/metabolism , Humans , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Monocytes/metabolism , Peptide Hydrolases/metabolism , Peptides/chemistry , Peptides/immunology , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , T-Lymphocytes, Cytotoxic/metabolism , Toll-Like Receptors/metabolism
17.
J Immunol ; 192(8): 3496-506, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24616479

ABSTRACT

Ag processing by intracellular proteases and peptidases and epitope presentation are critical for recognition of pathogen-infected cells by CD8+ T lymphocytes. First-generation HIV protease inhibitors (PIs) alter proteasome activity, but the effect of first- or second-generation PIs on other cellular peptidases, the underlying mechanism, and impact on Ag processing and epitope presentation to CTL are still unknown. In this article, we demonstrate that several HIV PIs altered not only proteasome but also aminopeptidase activities in PBMCs. Using an in vitro degradation assay involving PBMC cytosolic extracts, we showed that PIs altered the degradation patterns of oligopeptides and peptide production in a sequence-specific manner, enhancing the cleavage of certain residues and reducing others. PIs affected the sensitivity of peptides to intracellular degradation, and altered the kinetics and amount of HIV epitopes produced intracellularly. Accordingly, the endogenous degradation of incoming virions in the presence of PIs led to variations in CTL-mediated killing of HIV-infected cells. By altering host protease activities and the degradation patterns of proteins in a sequence-specific manner, HIV PIs may diversify peptides available for MHC class I presentation to CTL, alter the patterns of CTL responses, and provide a complementary approach to current therapies for the CTL-mediated clearance of abnormal cells in infection, cancer, or other immune disease.


Subject(s)
Aminopeptidases/metabolism , Antigen Presentation/drug effects , Antigen Presentation/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , HIV Protease Inhibitors/pharmacology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/immunology , Enzyme Activation/drug effects , Epitopes, T-Lymphocyte/chemistry , HIV-1/immunology , Humans , Intracellular Space/metabolism , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/enzymology , T-Lymphocytes, Cytotoxic/immunology
18.
PLoS One ; 9(1): e86254, 2014.
Article in English | MEDLINE | ID: mdl-24465991

ABSTRACT

HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag) elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag) increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV-1/immunology , T-Lymphocytes/immunology , Vaccination , Vaccines, DNA/immunology , Animals , Conserved Sequence , DNA, Viral/genetics , HIV-1/genetics , Immunity, Cellular , Immunization, Secondary , Macaca mulatta , Protein Precursors/genetics
19.
J Acquir Immune Defic Syndr ; 65(1): 1-9, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23846565

ABSTRACT

BACKGROUND: HIV-1 establishes a lifelong infection in the human body, but host factors that influence viral persistence remain poorly understood. Cell-intrinsic characteristics of CD4 T cells, the main target cells for HIV-1, may affect the composition of the latent viral reservoir by altering the susceptibility to CD8 T-cell-mediated killing. RESULTS: We observed that susceptibilities of CD4 T cells to CD8 T-cell-mediated killing, as determined in direct ex vivo assays, were significantly higher in persons with natural control of HIV-1 (elite controllers) than in individuals effectively treated with antiretroviral therapy. These differences were most pronounced in naive and in terminally differentiated CD4 T cells and corresponded to a reduced viral reservoir size in elite controllers. Interestingly, the highest susceptibility to CD8 T-cell-mediated killing and lowest reservoirs of cell-associated HIV-1 DNA was consistently observed in elite controllers expressing the protective HLA class I allele B57. CONCLUSIONS: These data suggest that the functional responsiveness of host CD4 T cells to cytotoxic effects of HIV-1-specific CD8 T cells can contribute to shaping the structure and composition of the latently infected CD4 T-cell pool.


Subject(s)
CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/physiology , HIV Long-Term Survivors/psychology , HIV-1/physiology , Adult , Aged , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/virology , Cytotoxicity, Immunologic/physiology , Female , Flow Cytometry , HIV Infections/immunology , HIV Infections/virology , Humans , Lymphocyte Subsets/physiology , Male , Middle Aged , Young Adult
20.
J Immunol Methods ; 398-399: 60-7, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24060536

ABSTRACT

The ability of cytotoxic T lymphocytes (CTL) to clear virus-infected cells requires the presentation of viral peptides intracellularly processed and displayed by major histocompatibility complex class I. Assays to measure CTL-mediated killing often use peptides exogenously added onto target cells--which does not account for epitope processing--or follow killing of infected cells at a single time point. In this study we established a real-time fluorogenic cytotoxic assay that measures the release of the Glucose-6-phosphate-dehydrogenase by dying target cells every 5 min after addition of CTL. It has comparable sensitivity to (51)chromium-based killing assay with the additional advantage of incorporating the kinetics of epitope presentation. We showed that HIV infection of immortalized or primary CD4 T cells leads to asynchronous killing by two CTL clones specific for epitopes located in different proteins. Real-time monitoring of killing of virus-infected cells will enable identification of immune responses efficiently preventing virus dissemination.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Transformed , Female , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/immunology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...