Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Vaccine ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705804

ABSTRACT

BACKGROUND: A single dose of Ad26.COV2.S is well-tolerated and effective in preventing moderate-to-severe disease outcomes due to COVID-19. We evaluated the impact of dose level, number of doses, and dose interval on immunogenicity, reactogenicity, and safety of Ad26.COV2.S in adults. Anamnestic responses were also explored. METHODS: This randomised, double-blind, placebo-controlled, Phase 2a study was conducted in adults aged 18-55 years and ≥ 65 years (NCT04535453). Four dose levels (1.25 × 1010, 2.5 × 1010, 5 × 1010, and 1 × 1011 viral particles [vp], single and 2-dose schedules, and dose intervals of 56 and 84 days, were assessed. Four or 6 months post-primary vaccination, Ad26.COV2.S 1.25 × 1010 vp was given to evaluate anamnestic responses. Humoral and cell-mediated immune responses were measured. Reactogenicity and safety were assessed in all participants. RESULTS: All Ad26.COV2.S schedules induced humoral responses with evidence of a dose response relationship. A single dose of Ad26.COV2.S (5 × 1010 vp) induced antibody and cellular immune responses that persisted for up to at least 6 months. In the 2-dose regimens, antibody responses were higher than 1-dose regimens at comparable dose levels, and the magnitude of the immune response increased when the interval between doses was increased (84 days vs 56 days). Rapid, marked immune responses were observed in all groups after vaccine antigen exposure indicating immune memory. Durable immune responses were observed in all groups for up to at least 6 months post-antigen exposure. Strong and consistent correlations between neutralising and binding antibodies were observed CD4 + and CD8 + T cell responses were similar after all regimens. Reactogenicity within 7 days post-vaccination tended to be dose-related. CONCLUSION: The study supports the primary, single dose schedule with Ad26.COV2.S at 5 × 1010 vp and homologous booster vaccination after a 6 month interval. Rapid and marked responses to vaccine antigen exposure indicate induction of immune memory by 1- and 2-dose primary vaccination.

2.
iScience ; 27(5): 109716, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38655202

ABSTRACT

The viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S induces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vaccination in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated comparators. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccination is mediated by affinity maturation.

3.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467646

ABSTRACT

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Amino Acids , Antibodies, Viral , Antibodies, Neutralizing
4.
iScience ; 26(9): 107619, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37670790

ABSTRACT

IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.

5.
CPT Pharmacometrics Syst Pharmacol ; 12(10): 1485-1498, 2023 10.
Article in English | MEDLINE | ID: mdl-37715342

ABSTRACT

Mechanistic model-based simulations can be deployed to project the persistence of humoral immune response following vaccination. We used this approach to project the antibody persistence through 24 months from the data pooled across five clinical trials in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-seronegative participants following vaccination with Ad26.COV2.S (5 × 1010 viral particles), given either as a single-dose or a homologous booster regimen at an interval of 2, 3, or 6 months. Antibody persistence was quantified as the percentage of participants with detectable anti-spike binding and wild-type virus neutralizing antibodies. The projected overall 24-month persistence after single-dose Ad26.COV2.S was 70.5% for binding antibodies and 55.2% for neutralizing antibodies, and increased after any homologous booster regimen to greater than or equal to 89.9% for binding and greater than or equal to 80.0% for neutralizing antibodies. The estimated model parameters quantifying the rates of antibody production attributed to short-lived and long-lived plasma cells decreased with increasing age, whereas the rate of antibody production mediated by long-lived plasma cells was higher in women relative to men. Accordingly, a more pronounced waning of antibody responses was predicted in men aged greater than or equal to 60 years and was markedly attenuated following any homologous boosting regimen. The findings suggest that homologous boosting might be a viable strategy for maintaining protective effects of Ad26.COV2.S for up to 24 months following prime vaccination. The estimation of mechanistic modeling parameters identified the long-lived plasma cell pathway as a key contributor mediating antibody persistence following single-dose and homologous booster vaccination with Ad26.COV2.S in different subgroups of recipients stratified by age and sex.


Subject(s)
Ad26COVS1 , COVID-19 , Male , Humans , Female , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing
6.
Res Sq ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-37398105

ABSTRACT

It is of interest to pinpoint SARS-CoV-2 sequence features defining vaccine resistance. In the ENSEMBLE randomized, placebo-controlled phase 3 trial, estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were measured from 484 vaccine and 1,067 placebo recipients who acquired COVID-19 during the trial. In Latin America, where Spike diversity was greatest, VE was significantly lower against Lambda than against Reference and against all non-Lambda variants [family-wise error rate (FWER) p < 0.05]. VE also differed by residue match vs. mismatch to the vaccine-strain residue at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20). VE significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 different antibody-epitope escape scores and by 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccine recipient sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against viruses with greatest distances. These results help map antigenic specificity of in vivo vaccine protection.

7.
Vaccine ; 41(9): 1602-1610, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36732164

ABSTRACT

BACKGROUND: This study evaluated safety, reactogenicity, and immunogenicity of a 2-month homologous booster regimen of Ad26.COV2.S in Japanese adults. METHODS: In this multicenter, placebo-controlled, Phase 1 trial, adults (Cohort 1, aged 20-55 years, N = 125; Cohort 2, aged ≥ 65 years, N = 125) were randomized 2:2:1 to receive Ad26.COV2.S 5 × 1010 viral particles (vp), Ad26.COV2.S 1 × 1011 vp, or placebo, followed by a homologous booster 56 days later. Safety, reactogenicity, and immunogenicity were assessed. RESULTS: Two hundred participants received Ad26.COV2.S and 50 received placebo. The most frequent solicited local adverse event (AE) was vaccination-site pain, and the most frequent solicited systemic AEs were fatigue, myalgia, and headache. After primary vaccination, neutralizing and binding antibody levels increased through Day 57 (post-prime) in both cohorts. Fourteen days after boosting (Day 71), neutralizing antibody geometric mean titers (GMTs) had almost reached their peak value in Cohort 1 (5 × 1010 vp: GMT = 1049; 1 × 1011 vp: GMT = 1470) and peaked in Cohort 2 (504; 651); at Day 85, GMTs had declined minimally in Cohort 2. For both cohorts, binding antibody levels peaked at Day 71 with minimal decline at Day 85. CONCLUSION: A single dose and homologous Ad26.COV2.S booster increased antibody responses with an acceptable safety profile in Japanese adults (ClinicalTrials.gov Identifier: NCT04509947).


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Ad26COVS1 , Japan , Antibodies, Neutralizing , Double-Blind Method , Immunogenicity, Vaccine , Antibodies, Viral
8.
Clin Pharmacol Ther ; 113(2): 380-389, 2023 02.
Article in English | MEDLINE | ID: mdl-36377532

ABSTRACT

Understanding persistence of humoral immune responses elicited by vaccination against coronavirus disease 2019 (COVID-19) is critical for informing the duration of protection and appropriate booster timing. We developed a mechanistic model to characterize the time course of humoral immune responses in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-seronegative adults after primary vaccination with the Janssen COVID-19 vaccine, Ad26.COV2.S. The persistence of antibody responses was quantified through mechanistic modeling-based simulations. Two biomarkers of humoral immune responses were examined: SARS-CoV-2 neutralizing antibodies determined by wild-type virus neutralization assay (wtVNA) and spike protein-binding antibodies determined by indirect spike protein enzyme-linked immunosorbent assay (S-ELISA). The persistence of antibody responses was defined as the period of time during which wtVNA and S-ELISA titers remained above the lower limit of quantification. A total of 442 wtVNA and 1,185 S-ELISA titers from 82 and 220 participants, respectively, were analyzed following administration of a single dose of Ad26.COV2.S (5 × 1010 viral particles). The mechanistic model adequately described the time course of observed wtVNA and S-ELISA serum titers and its associated variability up to 8 months following vaccination. Mechanistic model-based simulations show that single-dose Ad26.COV2.S elicits durable but waning antibody responses up to 24 months following immunization. Of the estimated model parameters, the production rate of memory B cells was decreased in older adults relative to younger adults, and the antibody production rate mediated by long-lived plasma cells was increased in women relative to men. A steeper waning of antibody responses was predicted in men and in older adults.


Subject(s)
Ad26COVS1 , COVID-19 , Male , Humans , Female , Aged , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , COVID-19/prevention & control , SARS-CoV-2 , Antibodies
9.
Nat Microbiol ; 7(12): 1996-2010, 2022 12.
Article in English | MEDLINE | ID: mdl-36357712

ABSTRACT

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , ChAdOx1 nCoV-19 , 2019-nCoV Vaccine mRNA-1273 , Vaccine Efficacy , Antibodies, Neutralizing
10.
Lancet Infect Dis ; 22(12): 1703-1715, 2022 12.
Article in English | MEDLINE | ID: mdl-36113538

ABSTRACT

BACKGROUND: Despite the availability of effective vaccines against COVID-19, booster vaccinations are needed to maintain vaccine-induced protection against variant strains and breakthrough infections. This study aimed to investigate the efficacy, safety, and immunogenicity of the Ad26.COV2.S vaccine (Janssen) as primary vaccination plus a booster dose. METHODS: ENSEMBLE2 is a randomised, double-blind, placebo-controlled, phase 3 trial including crossover vaccination after emergency authorisation of COVID-19 vaccines. Adults aged at least 18 years without previous COVID-19 vaccination at public and private medical practices and hospitals in Belgium, Brazil, Colombia, France, Germany, the Philippines, South Africa, Spain, the UK, and the USA were randomly assigned 1:1 via a computer algorithm to receive intramuscularly administered Ad26.COV2.S as a primary dose plus a booster dose at 2 months or two placebo injections 2 months apart. The primary endpoint was vaccine efficacy against the first occurrence of molecularly confirmed moderate to severe-critical COVID-19 with onset at least 14 days after booster vaccination, which was assessed in participants who received two doses of vaccine or placebo, were negative for SARS-CoV-2 by PCR at baseline and on serology at baseline and day 71, had no major protocol deviations, and were at risk of COVID-19 (ie, had no PCR-positive result or discontinued the study before day 71). Safety was assessed in all participants; reactogenicity, in terms of solicited local and systemic adverse events, was assessed as a secondary endpoint in a safety subset (approximately 6000 randomly selected participants). The trial is registered with ClinicalTrials.gov, NCT04614948, and is ongoing. FINDINGS: Enrolment began on Nov 16, 2020, and the primary analysis data cutoff was June 25, 2021. From 34 571 participants screened, the double-blind phase enrolled 31 300 participants, 14 492 of whom received two doses (7484 in the Ad26.COV2.S group and 7008 in the placebo group) and 11 639 of whom were eligible for inclusion in the assessment of the primary endpoint (6024 in the Ad26.COV2.S group and 5615 in the placebo group). The median (IQR) follow-up post-booster vaccination was 36·0 (15·0-62·0) days. Vaccine efficacy was 75·2% (adjusted 95% CI 54·6-87·3) against moderate to severe-critical COVID-19 (14 cases in the Ad26.COV2.S group and 52 cases in the placebo group). Most cases were due to the variants alpha (B.1.1.7) and mu (B.1.621); endpoints for the primary analysis accrued from Nov 16, 2020, to June 25, 2021, before the global dominance of delta (B.1.617.2) or omicron (B.1.1.529). The booster vaccine exhibited an acceptable safety profile. The overall frequencies of solicited local and systemic adverse events (evaluated in the safety subset, n=6067) were higher among vaccine recipients than placebo recipients after the primary and booster doses. The frequency of solicited adverse events in the Ad26.COV2.S group were similar following the primary and booster vaccinations (local adverse events, 1676 [55·6%] of 3015 vs 896 [57·5%] of 1559, respectively; systemic adverse events, 1764 [58·5%] of 3015 vs 821 [52·7%] of 1559, respectively). Solicited adverse events were transient and mostly grade 1-2 in severity. INTERPRETATION: A homologous Ad26.COV2.S booster administered 2 months after primary single-dose vaccination in adults had an acceptable safety profile and was efficacious against moderate to severe-critical COVID-19. Studies assessing efficacy against newer variants and with longer follow-up are needed. FUNDING: Janssen Research & Development.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Adolescent , SARS-CoV-2 , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Ad26COVS1 , Double-Blind Method , Immunogenicity, Vaccine , Antibodies, Viral
11.
JAMA Netw Open ; 5(8): e2226335, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35947380

ABSTRACT

Importance: Antibody responses elicited by current messenger RNA (mRNA) COVID-19 vaccines decline rapidly and require repeated boosting. Objective: To evaluate the immunogenicity and durability of heterologous and homologous prime-boost regimens involving the adenovirus vector vaccine Ad26.COV2.S and the mRNA vaccine BNT162b2. Design, Setting, and Participants: In this cohort study at a single clinical site in Boston, Massachusetts, 68 individuals who were vaccinated at least 6 months previously with 2 immunizations of BNT162b2 were boosted with either Ad26.COV2.S or BNT162b2. Enrollment of participants occurred from August 12, 2021, to October 25, 2021, and this study involved 4 months of follow-up. Data analysis was performed from November 2021 to February 2022. Exposures: Participants who were previously vaccinated with BNT162b2 received a boost with either Ad26.COV2.S or BNT162b2. Main Outcomes and Measures: Humoral immune responses were assessed by neutralizing, binding, and functional antibody responses for 16 weeks following the boost. CD8+ and CD4+ T-cell responses were evaluated by intracellular cytokine staining assays. Results: Among 68 participants who were originally vaccinated with BNT162b2 and boosted with Ad26.COV2.S (41 participants; median [range] age, 36 [23-84] years) or BNT162b2 (27 participants; median [range] age, 35 [23-76] years), 56 participants (82%) were female, 7 (10%) were Asian, 4 (6%) were Black, 4 (6%) were Hispanic or Latino, 3 (4%) were more than 1 race, and 53 (78%) were White. Both vaccines were found to be associated with increased humoral and cellular immune responses, including against SARS-CoV-2 variants of concern. BNT162b2 boosting was associated with a rapid increase of Omicron neutralizing antibodies that peaked at a median (IQR) titer of 1018 (699-1646) at week 2 and declined by 6.9-fold to a median (IQR) titer of 148 (95-266) by week 16. Ad26.COV2.S boosting was associated with increased Omicron neutralizing antibodies titers that peaked at a median (IQR) of 859 (467-1838) week 4 and declined by 2.1-fold to a median (IQR) of 403 (208-1130) by week 16. Conclusions and Relevance: Heterologous Ad26.COV2.S boosting was associated with durable humoral and cellular immune responses in individuals who originally received the BNT162b2 vaccine. These data suggest potential benefits of heterologous prime-boost vaccine regimens for SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Adult , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Female , Humans , Male , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
12.
Vaccine ; 40(32): 4403-4411, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35667914

ABSTRACT

BACKGROUND: Ad26.COV2.S is a well-tolerated and effective vaccine against COVID-19. We evaluated durability of anti-SARS-CoV-2 antibodies elicited by single-dose Ad26.COV2.S and the impact of boosting. METHODS: In randomized, double-blind, placebo-controlled, phase 1/2a and phase 2 trials, participants received single-dose Ad26.COV2.S (5 × 1010 viral particles [vp]) followed by booster doses of 5 × 1010 vp or 1.25 × 1010 vp. Neutralizing antibody levels were determined by a virus neutralization assay (VNA) approximately 8-9 months after dose 1. Binding and neutralizing antibody levels were evaluated by an enzyme-linked immunosorbent assay and pseudotyped VNA 6 months after dose 1 and 7 and 28 days after boosting. RESULTS: Data were analyzed from phase 1/2a participants enrolled from 22 July-18 December 2020 (Cohort 1a, 18-55 years [y], N = 25; Cohort 2a, 18-55y, N = 17; Cohort 3, ≥65y, N = 22), and phase 2 participants from 14 to 22 September 2020 (18-55y and ≥ 65y, N = 73). Single-dose Ad26.COV2.S elicited stable neutralizing antibodies for at least 8-9 months and stable binding antibodies for at least 6 months, irrespective of age. A 5 × 1010 vp 2-month booster dose increased binding antibodies by 4.9- to 6.2-fold 14 days post-boost versus 28 days after initial immunization. A 6-month booster elicited a steep and robust 9-fold increase in binding antibody levels 7 days post-boost. A 5.0-fold increase in neutralizing antibodies was observed by 28 days post-boost for the Beta variant. A 1.25 × 1010 vp 6-month booster elicited a 3.6-fold increase in binding antibody levels at 7 days post-boost versus pre-boost, with a similar magnitude of post-boost responses in both age groups. CONCLUSIONS: Single-dose Ad26.COV2.S elicited durable antibody responses for at least 8 months and elicited immune memory. Booster-elicited binding and neutralizing antibody responses were rapid and robust, even with a quarter vaccine dose, and stronger with a longer interval since primary vaccination. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04436276, NCT04535453.


Subject(s)
Ad26COVS1 , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
13.
Immunol Rev ; 310(1): 47-60, 2022 09.
Article in English | MEDLINE | ID: mdl-35689434

ABSTRACT

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused substantial morbidity and mortality. Despite the availability of efficacious vaccines, new variants with reduced sensitivity to vaccine-induced protection are a troubling new reality. The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding a full-length, membrane-bound severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. This review discusses the immunogenicity and efficacy of Ad26.COV2.S as a single-dose primary vaccination and as a homologous or heterologous booster vaccination. Ad26.COV2.S elicits broad humoral and cellular immune responses, which are associated with protective efficacy/effectiveness against SARS-CoV-2 infection, moderate to severe/critical COVID-19, and COVID-19-related hospitalization and death, including against emerging SARS-CoV-2 variants. The humoral immune responses elicited by Ad26.COV2.S vaccination are durable, continue to increase for at least 2-3 months postvaccination, and involve a range of functional antibodies. Ad26.COV2.S given as a heterologous booster to mRNA vaccine-primed individuals markedly increases humoral and cellular immune responses. The use of Ad26.COV2.S as primary vaccination and as part of booster regimens is supporting the ongoing efforts to control and mitigate the COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
14.
J Infect Dis ; 226(6): 979-982, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35429381

ABSTRACT

This secondary analysis of the phase 3 ENSEMBLE trial (NCT04505722) assessed the impact of preexisting humoral immunity to adenovirus 26 (Ad26) on the immunogenicity of Ad26.COV2.S-elicited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody levels in 380 participants in Brazil, South Africa, and the United States. Among those vaccinated in Brazil and South Africa, 31% and 66%, respectively, had prevaccination serum-neutralizing activity against Ad26, with little preexisting immunity detected in the United States. Vaccine recipients in each country had similar postvaccination spike (S) protein-binding antibody levels, indicating that baseline immunity to Ad26 has no clear impact on vaccine-induced immune responses.


Subject(s)
Adenoviridae Infections , COVID-19 , Ad26COVS1 , Adenoviridae , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Genetic Vectors , Humans , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , SARS-CoV-2
15.
Hum Vaccin Immunother ; 18(5): 2044255, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35344464

ABSTRACT

An inactivated poliovirus vaccine candidate using Sabin strains (sIPV) grown on the PER.C6® cell line was assessed in infants after demonstrated immunogenicity and safety in adults. The study recruited 300 infants who were randomized (1:1:1:1) to receive one of 3 dose levels of sIPV or a conventional IPV based on Salk strains (cIPV). Poliovirus-neutralizing antibodies were measured before the first dose and 28 days after the third dose. Reactogenicity was assessed for 7 days and unsolicited adverse events (AEs) for 28 days after each vaccination. Serious AEs (SAEs) were recorded throughout the study. Solicited AEs were mostly mild to moderate. None of the SAEs reported in the study were judged vaccine related, including one fatal SAE due to aspiration of vomitus that occurred 26 days after the third dose of low-dose sIPV. After 3 sIPV vaccinations and across all dose levels, seroconversion (SC) rates were at least 92% against Sabin poliovirus types and at least 80% against Salk types, with a dose-response in neutralizing antibody geometric mean titers (GMTs) observed across the 3 sIPV groups. Compared to cIPV, the 3 sIPV groups displayed similar or higher SC rates and GMTs against the 3 Sabin types but showed a lower response against Salk types 1 and 2; this was most visible for Salk type 1. While the PER.C6® cell line-based sIPV showed an acceptable safety profile and immunogenicity in infants, lower seroprotection against type 1 warrants optimization of dose level and additional clinical evaluation.


Subject(s)
Poliomyelitis , Poliovirus , Adult , Antibodies, Neutralizing , Antibodies, Viral , Cell Line , Humans , Immunogenicity, Vaccine , Infant , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral/adverse effects
16.
N Engl J Med ; 386(9): 847-860, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35139271

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine was highly effective against severe-critical coronavirus disease 2019 (Covid-19), hospitalization, and death in the primary phase 3 efficacy analysis. METHODS: We conducted the final analysis in the double-blind phase of our multinational, randomized, placebo-controlled trial, in which adults were assigned in a 1:1 ratio to receive single-dose Ad26.COV2.S (5×1010 viral particles) or placebo. The primary end points were vaccine efficacy against moderate to severe-critical Covid-19 with onset at least 14 days after administration and at least 28 days after administration in the per-protocol population. Safety and key secondary and exploratory end points were also assessed. RESULTS: Median follow-up in this analysis was 4 months; 8940 participants had at least 6 months of follow-up. In the per-protocol population (39,185 participants), vaccine efficacy against moderate to severe-critical Covid-19 at least 14 days after administration was 56.3% (95% confidence interval [CI], 51.3 to 60.8; 484 cases in the vaccine group vs. 1067 in the placebo group); at least 28 days after administration, vaccine efficacy was 52.9% (95% CI, 47.1 to 58.1; 433 cases in the vaccine group vs. 883 in the placebo group). Efficacy in the United States, primarily against the reference strain (B.1.D614G) and the B.1.1.7 (alpha) variant, was 69.7% (95% CI, 60.7 to 76.9); efficacy was reduced elsewhere against the P.1 (gamma), C.37 (lambda), and B.1.621 (mu) variants. Efficacy was 74.6% (95% CI, 64.7 to 82.1) against severe-critical Covid-19 (with only 4 severe-critical cases caused by the B.1.617.2 [delta] variant), 75.6% (95% CI, 54.3 to 88.0) against Covid-19 leading to medical intervention (including hospitalization), and 82.8% (95% CI, 40.5 to 96.8) against Covid-19-related death, with protection lasting 6 months or longer. Efficacy against any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was 41.7% (95% CI, 36.3 to 46.7). Ad26.COV2.S was associated with mainly mild-to-moderate adverse events, and no new safety concerns were identified. CONCLUSIONS: A single dose of Ad26.COV2.S provided 52.9% protection against moderate to severe-critical Covid-19. Protection varied according to variant; higher protection was observed against severe Covid-19, medical intervention, and death than against other end points and lasted for 6 months or longer. (Funded by Janssen Research and Development and others; ENSEMBLE ClinicalTrials.gov number, NCT04505722.).


Subject(s)
Ad26COVS1 , COVID-19/prevention & control , Vaccine Efficacy/statistics & numerical data , Ad26COVS1/adverse effects , Ad26COVS1/immunology , Adolescent , Adult , COVID-19/epidemiology , COVID-19/mortality , Double-Blind Method , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Immunogenicity, Vaccine , Kaplan-Meier Estimate , Middle Aged , Patient Acuity , SARS-CoV-2 , Young Adult
17.
NPJ Vaccines ; 7(1): 2, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013325

ABSTRACT

SARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.

18.
Nat Commun ; 12(1): 5877, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620860

ABSTRACT

Several COVID-19 vaccines have recently gained authorization for emergency use. Limited knowledge on duration of immunity and efficacy of these vaccines is currently available. Data on other coronaviruses after natural infection suggest that immunity to SARS-CoV-2 might be short-lived, and preliminary evidence indicates waning antibody titers following SARS-CoV-2 infection. In this work, we model the relationship between immunogenicity and protective efficacy of a series of Ad26 vectors encoding stabilized variants of the SARS-CoV-2 Spike protein in rhesus macaques and validate the analyses by challenging macaques 6 months after immunization with the Ad26.COV2.S vaccine candidate that has been selected for clinical development. We show that Ad26.COV2.S confers durable protection against replication of SARS-CoV-2 in the lungs that is predicted by the levels of Spike-binding and neutralizing antibodies, indicating that Ad26.COV2.S could confer durable protection in humans and immunological correlates of protection may enable the prediction of durability of protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Ad26COVS1 , Animals , Female , HEK293 Cells , Humans , Immunity, Humoral , Logistic Models , Lung/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Male , Nose/immunology , Nose/virology , SARS-CoV-2/physiology , Virus Replication/physiology
19.
medRxiv ; 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34268527

ABSTRACT

Interim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported 1-3 . We describe here the 8-month durability of humoral and cellular immune responses in 20 individuals who received one or two doses of 5Ã-10 10 vp or 10 11 vp Ad26.COV2.S and in 5 participants who received placebo 2 . We evaluated antibody and T cell responses on day 239, which was 8 months after the single-shot vaccine regimen (N=10) or 6 months after the two-shot vaccine regimen (N=10), although the present study was not powered to compare these regimens 3 . We also report neutralizing antibody responses against the parental SARS-CoV-2 WA1/2020 strain as well as against the SARS-CoV-2 variants D614G, B.1.1.7 (alpha), B.1.617.1 (kappa), B.1.617.2 (delta), P.1 (gamma), B.1.429 (epsilon), and B.1.351 (beta).

SELECTION OF CITATIONS
SEARCH DETAIL
...