Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161803

ABSTRACT

Water losses from water distribution means have a high environmental impact in terms of natural resource depletion (water, energy, ecosystems). This work aims to develop an optical airborne surveillance service for the detection of water leaks (WADI-Water-tightness Airborne Detection Implementation) to provide water utilities with adequate and timely information on leaks in water transportation mains outside urban areas. Firstly, a series of measurement campaigns were performed with two hyperspectral cameras and a thermal infrared camera in order to select the most appropriate wavelengths and combinations thereof for best revealing high moisture areas, which are taken as a proxy for water leakage. The Temperature-Vegetation-Index method (T-VI, also known as Triangle/Trapezoid method) was found to provide the highest contrast-to-noise ratio. This preliminary work helped select the most appropriate onboard instrumentation for two types of aerial platforms, manned (MAV) and unmanned (UAV). Afterwards, a series of measurement campaigns were performed from 2017 to 2019 in an operational environment over two water distribution networks in France and Portugal. Artificial leaks were introduced and both remote sensing platforms successfully detected them when excluding the unfavorable situations of a recent rain event or high vegetation presence. With the most recent equipment configuration, known and unknown real leaks in the overflown part of a water transportation network in Portugal have been detected. A significant number of false alarms were also observed which were due either to natural water flows (groundwater exfiltration, irrigation runoff and ponds) or to vegetation-cover variability nearby water-distribution nodes. Close interaction with the water utilities, and ancillary information like topographic factors (e.g., slope orientation), are expected to reduce the false alarm rates and improve WADI's methodology performance.


Subject(s)
Groundwater , Remote Sensing Technology , Ecosystem , Environment , Water
2.
Ecol Evol ; 7(3): 964-973, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28168032

ABSTRACT

Inbreeding depression is a major concern in almost all human activities relating to plant and animal breeding. The biological control of pests with natural enemies is no exception, because populations of biocontrol agents experience a series of bottlenecks during importation, rearing, and introduction. A classical biological control program for the Comstock mealybug Pseudococcus comstocki (Hemiptera: Pseudococcidae) was initiated in France in 2008, based on the introduction of an exotic parasitoid, Allotropa burrelli Mues. (Hymenoptera: Platygastridae), a haplodiploid parasitoid imported from Japan. We evaluated the sensitivity of A. burrelli to inbreeding, to optimize rearing and release strategies. We compared several morphological and life-history traits between the offspring of siblings and the offspring of unrelated parents. We took into account the low level of genetic variability due to the relatively small size of laboratory-reared populations by contrasting two types of pedigree: one for individuals from a strain founded from a single field population, and the other generated by hybridizing individuals from two strains founded from two highly differentiated populations. Despite this careful design, we obtained no evidence for a negative impact of inbreeding on laboratory-reared A. burrelli. We discussed the results in light of haplodiploid sex determination and parasitoid mating systems, and classical biological control practices.

3.
PLoS One ; 11(6): e0157965, 2016.
Article in English | MEDLINE | ID: mdl-27362639

ABSTRACT

Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.


Subject(s)
Hemiptera/parasitology , Insect Control/methods , Parasites/classification , Pest Control, Biological/methods , Animals , Biological Control Agents , DNA Barcoding, Taxonomic , France , Host-Parasite Interactions , Parasites/isolation & purification , Parasites/physiology , Phylogeny , Population Control
4.
Sci Rep ; 5: 8371, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25667134

ABSTRACT

The Lepidopteran pest of tomato, Tuta absoluta, is native to South America and is invasive in the Mediterranean basin. The species' routes of invasion were investigated. The genetic variability of samples collected in South America, Europe, Africa and Middle East was analyzed using microsatellite markers to infer precisely the source of the invasive populations and to test the hypothesis of a single versus multiple introductions into the old world continents. This analysis provides strong evidence that the origin of the invading populations was unique and was close to or in Chile, and probably in Central Chile near the town of Talca in the district of Maule.


Subject(s)
Introduced Species , Lepidoptera/physiology , Microsatellite Repeats , Solanum lycopersicum/parasitology , Animals , Chile , Mediterranean Region
5.
BMC Plant Biol ; 13: 45, 2013 Mar 16.
Article in English | MEDLINE | ID: mdl-23497245

ABSTRACT

BACKGROUND: Development of durable plant genetic resistance to pathogens through strategies of QTL pyramiding and diversification requires in depth knowledge of polygenic resistance within the available germplasm. Polygenic partial resistance to Aphanomyces root rot, caused by Aphanomyces euteiches, one of the most damaging pathogens of pea worldwide, was previously dissected in individual mapping populations. However, there are no data available regarding the diversity of the resistance QTL across a broader collection of pea germplasm. In this study, we performed a meta-analysis of Aphanomyces root rot resistance QTL in the four main sources of resistance in pea and compared their genomic localization with genes/QTL controlling morphological or phenological traits and with putative candidate genes. RESULTS: Meta-analysis, conducted using 244 individual QTL reported previously in three mapping populations (Puget x 90-2079, Baccara x PI180693 and Baccara x 552) and in a fourth mapping population in this study (DSP x 90-2131), resulted in the identification of 27 meta-QTL for resistance to A. euteiches. Confidence intervals of meta-QTL were, on average, reduced four-fold compared to mean confidence intervals of individual QTL. Eleven consistent meta-QTL, which highlight seven highly consistent genomic regions, were identified. Few meta-QTL specificities were observed among mapping populations, suggesting that sources of resistance are not independent. Seven resistance meta-QTL, including six of the highly consistent genomic regions, co-localized with six of the meta-QTL identified in this study for earliness and plant height and with three morphological genes (Af, A, R). Alleles contributing to the resistance were often associated with undesirable alleles for dry pea breeding. Candidate genes underlying six main meta-QTL regions were identified using colinearity between the pea and Medicago truncatula genomes. CONCLUSIONS: QTL meta-analysis provided an overview of the moderately low diversity of loci controlling partial resistance to A. euteiches in four main sources of resistance in pea. Seven highly consistent genomic regions with potential use in marker-assisted-selection were identified. Confidence intervals at several main QTL regions were reduced and co-segregation among resistance and morphological/phenological alleles was identified. Further work will be required to identify the best combinations of QTL for durably increasing partial resistance to A. euteiches.


Subject(s)
Aphanomyces/physiology , Pisum sativum/genetics , Pisum sativum/immunology , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant/genetics , Disease Resistance , Genetic Linkage , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology
6.
Theor Appl Genet ; 123(2): 261-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21479935

ABSTRACT

Partial resistances, often controlled by quantitative trait loci (QTL), are considered to be more durable than monogenic resistances. Therefore, a precursor to developing efficient breeding programs for polygenic resistance to pathogens should be a greater understanding of genetic diversity and stability of resistance QTL in plants. In this study, we deciphered the diversity and stability of resistance QTL to Aphanomyces euteiches in pea towards pathogen variability, environments and scoring criteria, from two new sources of partial resistance (PI 180693 and 552), effective in French and USA infested fields. Two mapping populations of 178 recombinant inbred lines each, derived from crosses between 552 or PI 180693 (partially resistant) and Baccara (susceptible), were used to identify QTL for Aphanomyces root rot resistance in controlled and in multiple French and USA field conditions using several resistance criteria. We identified a total of 135 additive-effect QTL corresponding to 23 genomic regions and 13 significant epistatic interactions associated with partial resistance to A. euteiches in pea. Among the 23 additive-effect genomic regions identified, five were consistently detected, and showed highly stable effects towards A. euteiches strains, environments, resistance criteria, condition tests and RIL populations studied. These results confirm the complexity of inheritance of partial resistance to A. euteiches in pea and provide good bases for the choice of consistent QTL to use in marker-assisted selection schemes to increase current levels of resistance to A. euteiches in pea breeding programs.


Subject(s)
Aphanomyces/pathogenicity , Pisum sativum/genetics , Plant Diseases , Plant Roots , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , France , Genetic Linkage , Genotype , Immunity, Innate , Pisum sativum/immunology , Pisum sativum/microbiology , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , United States
7.
Theor Appl Genet ; 120(5): 955-70, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20012740

ABSTRACT

A higher understanding of genetic and genomic bases of partial resistance in plants and their diversity regarding pathogen variability is required for a more durable management of resistance genetic factors in sustainable cropping systems. In this study, we investigated the diversity of genetic factors involved in partial resistance to Aphanomyces euteiches, a very damaging pathogen on pea and alfalfa, in Medicago truncatula. A mapping population of 178 recombinant inbred lines, from the cross F83005.5 (susceptible) and DZA045.5 (resistant), was used to identify quantitative trait loci for resistance to four A. euteiches reference strains belonging to the four main pathotypes currently known on pea and alfalfa. A major broad-spectrum genomic region, previously named AER1, was localized to a reduced 440 kb interval on chromosome 3 and was involved in complete or partial resistance, depending on the A. euteiches strain. We also identified 21 additive and/or epistatic genomic regions specific to one or two strains, several of them being anchored to the M. truncatula physical map. These results show that, in M. truncatula, a complex network of genetic loci controls partial resistance to different pea and alfalfa pathotypes of A. euteiches, suggesting a diversity of molecular mechanisms underlying partial resistance.


Subject(s)
Aphanomyces/pathogenicity , Gene Regulatory Networks , Genetic Loci , Immunity, Innate/genetics , Medicago truncatula , Plant Diseases/genetics , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Epistasis, Genetic , Gene Expression Regulation, Plant , Genes, Plant , Genetic Linkage , Genetic Markers , Medicago truncatula/genetics , Medicago truncatula/immunology , Medicago truncatula/parasitology , Molecular Sequence Data , Phenotype , Plant Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...