Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
PLoS One ; 19(6): e0304914, 2024.
Article in English | MEDLINE | ID: mdl-38935790

ABSTRACT

Lung cancer is one of the most common and deadliest cancers. Preclinical models are essential to study new therapies and combinations taking tumor genetics into account. We have established cell lines expressing the luciferase gene from lines with varied genetic backgrounds, commonly encountered in patients with pulmonary adenocarcinoma. We have characterized these lines by testing their response to multiple drugs. Thus, we have developed orthotopic preclinical mouse models of NSCLC with very high engraftment efficiency. These models allow the easy monitoring of tumor growth, particularly in response to treatment, and of tumor cells dissemination in the body. We show that concomitant treatment with osimertinib (3rd generation tyrosine kinase inhibitor targeting mutated EGFR) and bevacizumab (anti-angiogenic targeting VEGF) can have a beneficial therapeutic effect on EGFR-mutated tumors. We also show that the addition of afatinib to osimertinib-treated tumors in escape leads to tumor growth inhibition. No such effect is observed with selumetinib or simvastatin. These preclinical mouse models therefore make it possible to test innovative therapeutic combinations and are also a tool of choice for studying resistance mechanisms.


Subject(s)
Acrylamides , Afatinib , Aniline Compounds , Bevacizumab , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Acrylamides/pharmacology , Afatinib/pharmacology , Afatinib/therapeutic use , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , Humans , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease Models, Animal , Xenograft Model Antitumor Assays , ErbB Receptors/metabolism , ErbB Receptors/genetics , Quinazolines/pharmacology , Quinazolines/therapeutic use , Quinazolines/administration & dosage , Piperazines/pharmacology , Piperazines/therapeutic use , Piperazines/administration & dosage , Female , Indoles , Pyrimidines
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38675418

ABSTRACT

The synthesis of a series of new N-benzylidene derivatives of 3-amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine 10(a-l) bearing two points of molecular diversity is reported. These new compounds were synthesized in five steps including two steps under microwave dielectric heating. They were fully characterized using 1H and 13C NMR, FTIR and HRMS. The in silico physicochemical properties of compounds 10(a-l) were determined according to Lipinski's rules of five (RO5) associated with the prediction of their bioavailability. These new compounds 10(a-l) were tested for their antiproliferative activities in fibroblasts and eight representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3, MCF7 and PANC1). Among them, the compounds 10h and 10i showed sub-micromolar cytotoxic activity on tumor cell lines (0.23 < IC50 < 0.3 µM) and no toxicity on fibroblasts (IC50 > 25 µM). A dose-dependent inhibition of Store-Operated Ca+2 Entry (SOCE) was observed in the HEK293 cell line with 10h. In vitro embryotoxicity and angiogenesis on the mCherry transgenic zebrafish line showed that 10h presented no toxic effect and no angiogenic effect on embryos with a dose of 5 µM at 72 hpf.

3.
Int J Pharm ; 649: 123645, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38040393

ABSTRACT

Drug nanocapsules coated with iron oxide nanoparticles (SPION) were elaborated by the simultaneous nanoprecipitation of the drug and the nanoparticles, through solvent shifting. We examined four drugs: sorafenib, sorafenib tosylate, α-tocopherol and paclitaxel, to cover the cases of molecular solids, ionic solids, and molecular liquids. We first investigated the formation of the drug core in the final mixture of solvents at different concentrations. A Surfactant-Free Micro-Emulsion domain (SFME, thermodynamically stable) was observed at low drug concentration and an Ouzo domain (metastable) at high drug concentration, except for the case of paclitaxel which crystallizes at high concentration without forming an Ouzo domain. When co-nanoprecipitated with the molecular drugs in the Ouzo domain (sorafenib or α-tocopherol), the SPION limited the coalescence of the drug particles to less than 100 nm, forming capsules with a drug encapsulation efficiency of ca 80 %. In contrast, larger capsules were formed from the SFME or when using the ionic form (sorafenib tosylate). Finally, the sorafenib-SPION capsules exhibit a similar chemotherapeutic effect as the free drug on the hepatocellular carcinoma in vitro.


Subject(s)
Liver Neoplasms , Nanocapsules , Humans , Nanocapsules/chemistry , Solvents , Sorafenib , alpha-Tocopherol , Molecular Structure , Paclitaxel , Magnetic Iron Oxide Nanoparticles
4.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234686

ABSTRACT

Three series of our lead CLK1 inhibitor DB18 have been designed, synthetized and tested against CLKs and DYRK1A kinases. Their cytotoxicity was subsequently measured on seven representative cancer cell lines. Guided by docking experiments, we focused on the less constrained part of the scaffold, and showed that drastically different substituents can be tolerated here. This work ended with the discovery of another promising derivative 12g, with IC50 = 0.004 µM in the inhibition of HsCLK1 and IC50 = 3.94 µM for the inhibition of HsDYRK1A. The SAR results are discussed in the light of extensive molecular modeling analyses. Finally, a kinome scan (463 human kinases) confirmed the outstanding selectivity of our lead compound DB18, suggesting that this scaffold is of prominent interest for selective CLK inhibitors. Altogether, these results pave the way for the development of inhibitors with novel selectivities in this family of kinases.


Subject(s)
Protein Kinase Inhibitors , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
5.
Hum Reprod ; 37(6): 1207-1228, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35459945

ABSTRACT

STUDY QUESTION: What biological processes are linked to the signaling of the energy sensor 5'-AMP-activated protein kinase (AMPK) in mouse and human granulosa cells (GCs)? SUMMARY ANSWER: The lack of α1AMPK in GCs impacted cell cycle, adhesion, lipid metabolism and induced a hyperandrogenic response. WHAT IS KNOWN ALREADY: AMPK is expressed in the ovarian follicle, and its activation by pharmacological medications, such as metformin, inhibits the production of steroids. Polycystic ovary syndrome (PCOS) is responsible for infertility in approximately 5-20% of women of childbearing age and possible treatments include reducing body weight, improving lifestyle and the administration of a combination of drugs to improve insulin resistance, such as metformin. STUDY DESIGN, SIZE, DURATION: AMPK signaling was evaluated by analyzing differential gene expression in immortalized human granulosa cells (KGNs) with and without silencing α1AMPK using CRISPR/Cas9. In vivo studies included the use of a α1AMPK knock-out mouse model to evaluate the role of α1AMPK in folliculogenesis and fertility. Expression of α1AMPK was evaluated in primary human granulosa-luteal cells retrieved from women undergoing IVF with and without a lean PCOS phenotype (i.e. BMI: 18-25 kg/m2). PARTICIPANTS/MATERIALS, SETTING, METHODS: α1AMPK was disrupted in KGN cells and a transgenic mouse model. Cell viability, proliferation and metabolism were evaluated. Androgen production was evaluated by analyzing protein levels of relevant enzymes in the steroid pathway by western blots, and steroid levels obtained from in vitro and in vivo models by mass spectrometry. Differential gene expression in human GC was obtained by RNA sequencing. Analysis of in vivo murine folliculogenesis was performed by histology and immunochemistry, including evaluation of the anti-Müllerian hormone (AMH) marker. The α1AMPK gene expression was evaluated by quantitative RT-PCR in primary GCs obtained from women with the lean PCOS phenotype (n = 8) and without PCOS (n = 9). MAIN RESULTS AND THE ROLE OF CHANCE: Silencing of α1AMPK in KGN increased cell proliferation (P < 0.05 versus control, n = 4), promoted the use of fatty acids over glucose, and induced a hyperandrogenic response resulting from upregulation of two of the enzymes involved in steroid production, namely 3ß-hydroxysteroid dehydrogenase (3ßHSD) and P450 side-chain cleavage enzyme (P450scc) (P < 0.05, n = 3). Female mice deficient in α1AMPK had a 30% decrease in their ovulation rate (P < 0.05, n = 7) and litter size, a hyperandrogenic response (P < 0.05, n = 7) with higher levels of 3ßHSD and p450scc levels in the ovaries, and an increase in the population of antral follicles (P < 0.01, n = 10) compared to controls. Primary GCs from lean women with PCOS had lower α1AMPK mRNA expression levels than the control group (P < 0.05, n = 8-9). LARGE SCALE DATA: The FastQ files and metadata were submitted to the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB46048. LIMITATIONS, REASONS FOR CAUTION: The human KGN is a not fully differentiated, transformed cell line. As such, to confirm the role of AMPK in GC and the PCOS phenotype, this model was compared to two others: an α1AMPK transgenic mouse model and primary differentiated granulosa-lutein cells from non-obese women undergoing IVF (with and without PCOS). A clear limitation is the small number of patients with PCOS utilized in this study and that the collection of human GCs was performed after hormonal stimulation. WIDER IMPLICATIONS OF THE FINDINGS: Our results reveal that AMPK is directly involved in steroid production in human GCs. In addition, AMPK signaling was associated with other processes frequently reported as dysfunctional in PCOS models, such as cell adhesion, lipid metabolism and inflammation. Silencing of α1AMPK in KGN promoted folliculogenesis, with increases in AMH. Evaluating the expression of the α1AMPK subunit could be considered as a marker of interest in infertility cases related to hormonal imbalances and metabolic disorders, including PCOS. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by the Institut National de la Recherche Agronomique (INRA) and the national programme « FERTiNERGY ¼ funded by the French National Research Agency (ANR). The authors report no intellectual or financial conflicts of interest related to this work. R.K. is identified as personnel of the International Agency for Research on Cancer/World Health Organization. R.K. alone is responsible for the views expressed in this article and she does not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Biological Phenomena , Hyperandrogenism , Infertility, Female , Metformin , Polycystic Ovary Syndrome , AMP-Activated Protein Kinases , Animals , Anti-Mullerian Hormone/metabolism , Female , Fertility , Humans , Hyperandrogenism/complications , Metformin/pharmacology , Mice , Polycystic Ovary Syndrome/metabolism
6.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34832868

ABSTRACT

Here, we report on the synthesis of libraries of new 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones 3 (twenty-two compounds) and new 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones 5 (twenty-four compounds) with stereo controlled Z-geometry under microwave irradiation. The 46 designed final compounds were tested in order to determine their activity against four representative protein kinases (DYR1A, CK1, CDK5/p25, and GSK3α/ß). Among these 1,3-thiazolidin-4-ones, the molecules (5Z) 5-(4-hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one 3e (IC50 0.028 µM) and (5Z)-5-benzo[1,3]dioxol-5-ylmethylene-2-(pyridin-2-yl)amino-1,3-thiazol-4(5H)-one 5s (IC50 0.033 µM) were identified as lead compounds and as new nanomolar DYRK1A inhibitors. Some of these compounds in the two libraries have been also evaluated for their in vitro inhibition of cell proliferation (Huh7 D12, Caco2, MDA-MB 231, HCT 116, PC3, and NCI-H2 tumor cell lines). These results will enable us to use the 1,3-thiazolidin-4-one core as pharmacophores to develop potent treatment for neurological or oncological disorders in which DYRK1A is fully involved.

7.
Bioorg Med Chem Lett ; 52: 128390, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34601029

ABSTRACT

A small library of new piperidine-triazole hybrids with 3-aryl isoxazole side chains has been designed and synthesized. Their cytotoxicity against a panel of seven cancer cell lines has been established. For the most promising compound, an IC50 value of 3.8 µM on PUMA/Bcl-xL interaction in live cancer cells was established through BRET analysis. A rationale was proposed for these results through complete molecular modelling studies.


Subject(s)
Antineoplastic Agents/pharmacology , Isoxazoles/pharmacology , Piperidines/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isoxazoles/chemistry , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
8.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34500781

ABSTRACT

This work describes the synthesis, enzymatic activities on PI3K and mTOR, in silico docking and cellular activities of various uncommon 2,4,7 trisubstituted pyrido[3,2-d]pyrimidines. The series synthesized offers a chemical diversity in C-7 whereas C-2 (3-hydroxyphenyl) and C-4 groups (morpholine) remain unchanged, in order to provide a better understanding of the molecular determinants of PI3K selectivity or dual activity on PI3K and mTOR. Some C-7 substituents were shown to improve the efficiency on kinases compared to the 2,4-di-substituted pyrimidopyrimidine derivatives used as references. Six novel derivatives possess IC50 values on PI3Kα between 3 and 10 nM. The compounds with the best efficiencies on PI3K and mTOR induced micromolar cytotoxicity on cancer cell lines possessing an overactivated PI3K pathway.


Subject(s)
Drug Design , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
9.
Bioorg Med Chem ; 31: 115962, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33422908

ABSTRACT

We describe in this paper the synthesis of a novel series of anilino-2-quinazoline derivatives. These compounds have been screened against a panel of eight mammalian kinases and in parallel they were tested for cytotoxicity on a representative panel of seven cancer cell lines. One of them (DB18) has been found to be a very potent inhibitor of human "CDC2-like kinases" CLK1, CLK2 and CLK4, with IC50 values in the 10-30 nM range. Interestingly, this molecule is inactive at 100 µM on the closely related "dual-specificity tyrosine-regulated kinase 1A" (DYRK1A). Extensive molecular simulation studies have been performed on the relevant kinases to explain the strong affinity of this molecule on CLKs, as well as its selectivity against DYRK1A.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Dyrk Kinases
10.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085612

ABSTRACT

Recent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines. The docking experiments predicted that GI and GII can enter into the AhR binding pocket, but their interactions with the amino acids of the binding site differ, in part, from those interacting with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Both GI and GII were able to weakly and partially activate AhR, with GII being more potent. The results from the transcriptome assays showed that approximately 10% of the genes regulated by TCDD were also modified by both GI and GII, which could have either antagonistic or synergistic effects upon TCDD activation. In addition, we report here, on the basis of phenotype, that GI and GII inhibit the migration of triple-negative (ER-, PgR-, HER2NEU-) MDA-MB-231 breast cancer cells, and that they inhibit the expression of genes which code for important regulators of cell migration and invasion in cancer tissues. In conclusion, GI and GII are AhR ligands that should be further investigated to determine their usefulness in cancer treatments.


Subject(s)
Cell Movement/drug effects , Pterocarpans/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ligands , Molecular Docking Simulation , Pterocarpans/chemistry , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Transcriptome/genetics
11.
Bioorg Chem ; 94: 103347, 2020 01.
Article in English | MEDLINE | ID: mdl-31810757

ABSTRACT

Original 1-amino substituted thioxanthone derivatives were easily prepared from the bare heterocycle by a deprotometalation-iodolysis-copper-catalyzed CN bond formation sequence. This last reaction delivered mono- or/and diarylated products depending on the aniline involved. 1-Amino-9-thioxanthone was also prepared and reacted with 2-iodoheterocycles. Interestingly, while 1-(arylamino)-9-thioxanthones could be isolated, their subsequent cyclization was found to deliver original hexacyclic derivatives of helicoidal nature. Evaluation of their photophysical properties revealed high fluorescence in polar media, indicating potential applications for biological imaging. These compounds being able to inhibit PIM1 kinase, their putative binding mode was examined through molecular modeling experiments. Altogether, these results tend to suggest the discovery of a new family of fluorescent PIM inhibitors and pave the way for their future rational optimization.


Subject(s)
Amines/chemistry , Quinolines/chemistry , Xanthones/chemistry , Molecular Structure , Thioxanthenes/chemistry , Thioxanthenes/pharmacology , Xanthones/pharmacology
12.
Sci Rep ; 9(1): 15249, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649300

ABSTRACT

Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.


Subject(s)
Apoptosis , Heat-Shock Response , Infrared Rays , Cell Line, Tumor , Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Phosphorylation
13.
Eur J Med Chem ; 168: 58-77, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30798053

ABSTRACT

Both cholinesterases (AChE and BChE) and kinases, such as GSK-3α/ß, are associated with the pathology of Alzheimer's disease. Two scaffolds, targeting AChE (tacrine) and GSK-3α/ß (valmerin) simultaneously, were assembled, using copper(I)-catalysed azide alkyne cycloaddition (CuAAC), to generate a new series of multifunctional ligands. A series of eight multi-target directed ligands (MTDLs) was synthesized and evaluated in vitro and in cell cultures. Molecular docking studies, together with the crystal structures of three MTDL/TcAChE complexes, with three tacrine-valmerin hybrids allowed designing an appropriate linker containing a 1,2,3-triazole moiety whose incorporation preserved, and even increased, the original inhibitory potencies of the two selected pharmacophores toward the two targets. Most of the new derivatives exhibited nanomolar affinity for both targets, and the most potent compound of the series displayed inhibitory potencies of 9.5 nM for human acetylcholinesterase (hAChE) and 7 nM for GSK-3α/ß. These novel dual MTDLs may serve as suitable leads for further development, since, in the micromolar range, they exhibited low cytotoxicity on a panel of representative human cell lines including the human neuroblastoma cell line SH-SY5Y. Moreover, these tacrine-valmerin hybrids displayed a good ability to penetrate the blood-brain barrier (BBB) without interacting with efflux pumps such as P-gp.


Subject(s)
Acetylcholinesterase/metabolism , Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Ligands , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
14.
Cells ; 8(2)2019 02 21.
Article in English | MEDLINE | ID: mdl-30795634

ABSTRACT

Of the hepatic cell lines developed for in vitro studies of hepatic functions as alternatives to primary human hepatocytes, many have lost major liver-like functions, but not HepaRG cells. The increasing use of the latter worldwide raises the need for establishing the reference functional status of early biobanked HepaRG cells. Using deep proteome and secretome analyses, the levels of master regulators of the hepatic phenotype and of the structural elements ensuring biliary polarity were found to be close to those in primary hepatocytes. HepaRG cells proved to be highly differentiated, with functional mitochondria, hepatokine secretion abilities, and an adequate response to insulin. Among differences between primary human hepatocytes and HepaRG cells, the factors that possibly support HepaRG transdifferentiation properties are discussed. The HepaRG cell system thus appears as a robust surrogate for primary hepatocytes, which is versatile enough to study not only xenobiotic detoxification, but also the control of hepatic energy metabolism, secretory function and disease-related mechanisms.


Subject(s)
Hepatocytes/metabolism , Proteome/metabolism , Proteomics/methods , Cell Differentiation , Cell Line, Tumor , Energy Metabolism , Female , Humans , Inactivation, Metabolic , Insulin/metabolism , Phenotype , Signal Transduction
15.
Bioorg Med Chem Lett ; 29(5): 755-760, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30655216

ABSTRACT

Various 3-amino-, 3-aryloxy- and alkoxy-6-arylpyridazines have been synthesized by an electrochemical reductive cross-coupling between 3-amino-, 3-aryloxy- or 3-alkoxy-6-chloropyridazines and aryl or heteroaryl halides. In vitro antiproliferative activity of these products was evaluated against a representative panel of cancer cell lines (HuH7, CaCo-2, MDA-MB-231, HCT116, PC3, NCI-H727, HaCaT) and oncogenicity prevention of the more efficient derivatives was highlighted on human breast cancer cell line MDA-MB 468-Luc prior establishing their interaction with p44/42 and Akt-dependent signaling pathways.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans
16.
Mol Divers ; 22(3): 685-708, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29623536

ABSTRACT

A series of 16 new ethyl [Formula: see text]-amino benzimidazole acrylate derivatives 12(a-p) with a (2E)-s-cis/trans conformation and bearing two points of diversity was designed and synthesized by using a multi-step strategy (reductive amination, deprotection in acidic media and transamination) in moderate to good yields from ethyl 3-dimethylamino-2-(1H-benzimidazol-2-yl)acrylate (5) and monosubstituted N-Boc diamines (7a,7b) as starting building blocks. Products 12 were evaluated for their in vitro cytotoxic potential against six selected human cell lines (Huh7-D12, Caco2, MDA-MB231, HCT116, PC3 and NCI-H727). Compounds 12a, 12e and 12l exhibited selective and micromolar antitumor activities against Huh7-D12 and Caco2 cell lines.


Subject(s)
Acrylates , Antineoplastic Agents , Benzimidazoles , Cytotoxins , Acrylates/chemical synthesis , Acrylates/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cytotoxins/chemical synthesis , Cytotoxins/pharmacology , Humans
17.
Eur J Med Chem ; 145: 570-587, 2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29339252

ABSTRACT

Starting from the X-ray structure of our previous tripeptidic linear mimics of TMC-95A in complex with yeast 20S proteasome, we introduced new structural features to induce a differential inhibition between human constitutive and immunoproteasome 20S particles. Libraries of 24 tripeptidic and 6 dipeptidic derivatives were synthesized. The optimized preparation of 3-hydroxyoxindolyl alanine residues from tryptophan and their incorporation in peptides were described. Several potent inhibitors of human constitutive proteasome and immunoproteasome acting at the nanomolar level (IC50 = 7.1 nM against the chymotrypsin-like activity for the best inhibitor) were obtained. A cytotoxic effect at the submicromolar level was observed against 6 human cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fibroblasts/drug effects , Humans , Molecular Structure , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Structure-Activity Relationship
18.
Bioorg Med Chem ; 25(6): 1817-1829, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28214231

ABSTRACT

22 Flavokawain derivatives (FKd) were obtained by one step syntheses in order to conduct a SAR study to understand the structural requirements for optimum and selective cytotoxicity. FKd and natural flavokawains A and B found into kava, a South Pacific traditional beverage, were evaluated against nine cancer and one healthy cell lines. The targeted cell cycle phases as well as the effects on the induction of apoptosis and cell cycle protein levels were investigated. Therapeutic improvements (more activity and selectivity) were achieved with FKd compared to natural flavokawains and notably with the 2',3,4',6'-tetramethoxychalcone (FKd 19). FKd induced a G1/S arrest on p53 wild-type cells and an M arrest on p53 mutant-type, via the up-regulation of p21 and cyclin B1 proteins, followed by apoptosis. Moreover, FKd exhibited a 24h-effect on Akt/mTor normal cells versus a 48h-effect on Akt/mTor up-regulated cells. The SAR study resulted in the conclusion that trimethoxy A-ring allowed the best compromise between cytotoxicity and selectivity, as well as the substitution of the meta position on the B-ring and the use of halogens substituents.


Subject(s)
Chalcone/analogs & derivatives , Flavonoids/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line , Cell Line, Tumor , Chalcone/chemistry , Chalcone/pharmacology , Drug Screening Assays, Antitumor , Flavonoids/chemistry , Humans , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
19.
ACS Chem Biol ; 12(3): 654-663, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28059499

ABSTRACT

Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan member of the nuclear receptor family of transcription factors whose activities are modulated upon binding of small molecules into an hydrophobic ligand-binding pocket (LBP). Although the LBP of COUP-TFII is filled with aromatic amino-acid side chains, alternative modes of ligand binding could potentially lead to regulation of the orphan receptor. Here, we screened a synthetic and natural compound library in a yeast one-hybrid assay and identified 4-methoxynaphthol as an inhibitor of COUP-TFII. This synthetic inhibitor was able to counteract processes either positively or negatively regulated by COUP-TFII in different mammalian cell systems. Hence, we demonstrate that the true orphan receptor COUP-TFII can be targeted by small chemicals which could be used to study the physiological functions of COUP-TFII or to counteract detrimental COUP-TFII activities in various pathological conditions.


Subject(s)
COUP Transcription Factor II/antagonists & inhibitors , Small Molecule Libraries , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Animals , Binding Sites , COUP Transcription Factor II/metabolism , Cell Differentiation/drug effects , Hep G2 Cells , Humans , Mice
20.
Oncotarget ; 7(26): 39026-39043, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27191501

ABSTRACT

About 20% hepatocellular carcinomas (HCCs) display wild-type ß-catenin, enhanced Wnt signaling, hepatocyte dedifferentiation and bad outcome, suggesting a specific impact of Wnt signals on HCC stem/progenitor cells. To study Wnt-specific molecular pathways, cell fates and clinical outcome, we fine-tuned Wnt/ß-catenin signaling in liver progenitor cells, using the prototypical Wnt ligand Wnt3a. Cell biology assays and transcriptomic profiling were performed in HepaRG hepatic progenitors exposed to Wnt3a after ß-catenin knockdown or Wnt inhibition with FZD8_CRD. Gene expression network, molecular pathology and survival analyses were performed on HCCs and matching non-tumor livers from 70 patients by real-time PCR and tissue micro-array-based immunohistochemistry. Wnt3a reprogrammed liver progenitors to replicating fibrogenic myofibroblast-like cells displaying stem and invasive features. Invasion was inhibited by 30 nM FZD7 and FZD8 CRDs. Translation of these data to human HCCs revealed two tight gene networks associating cell surface Wnt signaling, stem/progenitor markers and mesenchymal commitment. Both networks were linked by Hyaluronan And Proteoglycan Link Protein 1 (HAPLN1), that appeared de novo in aggressive HCCs expressing cytoplasmic ß-catenin and stem cell markers. HAPLN1 was independently associated with bad overall and disease-free outcome. In vitro, HAPLN1 was expressed de novo in EPCAM¯/NCAM+ mesoderm-committed progenitors, upon spontaneous epithelial-mesenchymal transition and de-differentiation of hepatocyte-like cells to liver progenitors. In these cells, HAPLN1 knockdown downregulated key markers of mesenchymal cells, such as Snail, LGR5, collagen IV and α-SMA. In conclusion, HAPLN1 reflects a signaling network leading to stemness, mesenchymal commitment and HCC progression.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Mesoderm/metabolism , Proteoglycans/metabolism , Stem Cells/metabolism , Wnt Proteins/metabolism , Aged , Cell Differentiation , Cell Line , Cell Line, Tumor , Cluster Analysis , Extracellular Matrix Proteins/genetics , Female , Fibroblasts/metabolism , Follow-Up Studies , Gene Expression Profiling , Humans , Immunohistochemistry , Ligands , Liver/metabolism , Liver/pathology , Male , Middle Aged , Neoplasm Invasiveness , Proteoglycans/genetics , Signal Transduction , Stem Cells/cytology , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL