Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 415(15): 2999-3006, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36869273

ABSTRACT

Due to the flux of plastic debris entering the environment, it becomes urgent to document and monitor their degradation pathways at different scales. At the colloidal scale, the systematic hetero-association of nanoplastics with the natural organic matter complexifies the ability to detect plastic signatures in the particle collected in the various environments. The current techniques used for microplastics could not discriminate the polymers at the nanoscale from the natural macromolecules, as the plastic mass in the aggregate is within the same order. Only a few methods are available concerning nanoplastics identification in complex matrices, with the coupling of pyrolysis with gas chromatography and mass spectrometry (Py-GC-MS) as one of the most promising due to its mass-based detection. However, natural organic matter in environmental samples interferes with similar pyrolysis products. These interferences are even more critical for polystyrene polymers as this plastic presents no dominant pyrolysis markers, such as polypropylene, that could be identified at trace concentrations. Here, we investigate the ability to detect and quantify polystyrene nanoplastics in a rich phase of natural organic matter proposed based on the relative ratio of pyrolyzates. The use of specific degradation products (styrene dimer and styrene trimer) and the toluene/styrene ratio (RT/S) are explored for these two axes. While the size of the polystyrene nanoplastics biased the pyrolyzates of styrene dimer and trimer, the RT/S was correlated with the nanoplastics mass fraction in the presence of natural organic matter. An empirical model is proposed to evaluate the relative quantity of polystyrene nanoplastics in relevant environmental matrices. The model was applied to real contaminated soil by plastic debris and literature data to demonstrate its potential.

2.
Anal Bioanal Chem ; 415(15): 2937-2946, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36847794

ABSTRACT

Microplastics (MPs) have become one of the major global environmental issues in recent decades due to their ubiquity in the environment. Understanding MPs source origin and reactivity is urgently needed to better constrain their fate and budget. Despite improvements in analytical methods to characterize MPs, new tools are needed to help understand their sources and reactivity in a complex environment. In this work, we developed and applied an original Purge-&-Trap system coupled to a GC-MS-C-IRMS to explore the δ13C compound-specific stable isotope analysis (CSIA) of volatile organic compounds (VOC) embedded in MPs. The method consists of heating and purging MP samples, with VOCs being cryo-trapped on a Tenax sorbent, followed by GC-MS-C-IRMS analysis. The method was developed using a polystyrene plastic material showing that sample mass and heating temperature increased the sensitivity while not influencing VOC δ13C values. This robust, precise, and accurate methodology allows VOC identification and δ13C CSIA in plastic materials in the low nanogram concentration range. Results show that the monomer styrene displays a different δ13C value (- 22.2 ± 0.2‰), compared to the δ13C value of the bulk polymer sample (- 27.8 ± 0.2‰). This difference could be related to the synthesis procedure and/or diffusion processes. The analysis of complementary plastic materials such as polyethylene terephthalate, and polylactic acid displayed unique VOC δ13C patterns, with toluene showing specific δ13C values for polystyrene (- 25.9 ± 0.1‰), polyethylene terephthalate (- 28.4 ± 0.5‰), and polylactic acid (- 38.7 ± 0.5‰). These results illustrate the potential of VOC δ13C CSIA in MP research to fingerprint plastic materials, and to improve our understanding of their source cycle. Further studies in the laboratory are needed to determine the main mechanisms responsible for MPs VOC stable isotopic fractionation.

3.
Chemosphere ; 262: 127784, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32777612

ABSTRACT

While several studies have investigated the potential impact of nanoplastics, proof of their occurrence in our global environment has not yet been demonstrated. In the present work, by developing an innovative analytical strategy, the presence of nanoplastics in soil was identified for the first time. Our results demonstrate the presence of nanoplastics with a size ranging from 20 to 150 nm and covering three of the most common plastic families: polyethylene, polystyrene and polyvinyl chloride. Given the amount of organic matter in the soil matrix, the discrimination and identification of large nanoplastic aggregates are challenging. However, we provided an innovative methodology to circumvent the organic matter impact on nanoplastic detection by coupling size fractionation to molecular analysis of plastics. While photodegradation has been considered the principal formation pathway of nanoplastics in the environment, this study provides evidence, for the first time, that plastic degradation and nanoplastic production can, however, occur in the soil matrix. Moreover, by providing an innovative and simple extraction/analysis method, this study paves the way to further studies, notably regarding nanoplastic environmental fate and impacts.


Subject(s)
Environmental Monitoring/methods , Microplastics/analysis , Nanoparticles/analysis , Soil Pollutants/analysis , Soil/chemistry , France , Particle Size , Polyethylene/analysis , Polystyrenes/analysis , Polyvinyl Chloride/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...