Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Antimicrob Agents Chemother ; : e0084224, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194209

ABSTRACT

UCT594 is a 2-aminopyrazine carboxylic acid Plasmodium phosphatidylinositol 4-kinase inhibitor with potent asexual blood-stage activity, the potential for interrupting transmission, as well as liver-stage activities. Herein, we investigated pharmacokinetic/pharmacodynamic (PK/PD) relationships relative to blood-stage activity toward predicting the human dose. Dose-fractionation studies were conducted in the Plasmodium falciparum NSG mouse model to determine the PK/PD indices of UCT594, using the in vivo minimum parasiticidal concentration as a threshold. UCT594 demonstrated concentration-dependent killing in the P. falciparum-infected NSG mouse model. Using this data and the preclinical pharmacokinetic data led to a low predicted human dose of <50 mg. This makes UCT594 an attractive potential antimalarial drug.

2.
Cell Chem Biol ; 29(5): 824-839.e6, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34233174

ABSTRACT

Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Parasites , Quinolines , ATP-Binding Cassette Transporters/genetics , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Heme , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Quinolines/pharmacology
3.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33573376

ABSTRACT

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Spiro Compounds/pharmacology , Animals , Anopheles/drug effects , Antimalarials/chemical synthesis , Antimalarials/metabolism , Female , Germ Cells/drug effects , High-Throughput Screening Assays , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Structure-Activity Relationship
5.
Nat Commun ; 12(1): 269, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431834

ABSTRACT

Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages.


Subject(s)
Antimalarials/therapeutic use , Drug Discovery , Malaria/drug therapy , Malaria/transmission , Pandemics , Aedes/parasitology , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Cluster Analysis , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , Liver/drug effects , Liver/parasitology , Malaria/epidemiology , Male , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development
6.
J Med Chem ; 63(21): 13013-13030, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33103428

ABSTRACT

A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.


Subject(s)
Antimalarials/chemistry , Hemeproteins/antagonists & inhibitors , Imidazoles/chemistry , Plasmodium falciparum/physiology , Protozoan Proteins/antagonists & inhibitors , Pyridines/chemistry , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Disease Models, Animal , Half-Life , Hemeproteins/metabolism , Imidazoles/metabolism , Imidazoles/pharmacology , Imidazoles/therapeutic use , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
7.
ACS Infect Dis ; 6(7): 1951-1964, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32470286

ABSTRACT

Phenotypic whole-cell screening against Mycobacterium tuberculosis (Mtb) in glycerol-alanine-salts supplemented with Tween 80 and iron (GASTE-Fe) media led to the identification of a 2-aminoquinazolinone hit compound, sulfone 1 which was optimized for solubility by replacing the sulfone moiety with a sulfoxide 2. The synthesis and structure-activity relationship (SAR) studies identified several compounds with potent antimycobacterial activity, which were metabolically stable and noncytotoxic. Compound 2 displayed favorable in vitro properties and was therefore selected for in vivo pharmacokinetic (PK) studies where it was found to be extensively metabolized to the sulfone 1. Both derivatives exhibited promising PK parameters; however, when 2 was evaluated for in vivo efficacy in an acute TB infection mouse model, it was found to be inactive. In order to understand the in vitro and in vivo discrepancy, compound 2 was subsequently retested in vitro using different Mtb strains cultured in different media. This revealed that activity was only observed in media containing glycerol and led to the hypothesis that glycerol was not used as a primary carbon source by Mtb in the mouse lungs, as has previously been observed. Support for this hypothesis was provided by spontaneous-resistant mutant generation and whole genome sequencing studies, which revealed mutations mapping to glycerol metabolizing genes indicating that the 2-aminoquinazolinones kill Mtb in vitro via a glycerol-dependent mechanism of action.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Animals , Antitubercular Agents/pharmacology , Drug Design , Mice , Structure-Activity Relationship
9.
J Med Chem ; 61(20): 9371-9385, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30256636

ABSTRACT

A lead-optimization program around a 2,6-imidazopyridine scaffold was initiated based on the two early lead compounds, 1 and 2, that were shown to be efficacious in an in vivo humanized Plasmodium falciparum NODscidIL2Rγnull mouse malaria infection model. The observation of atypical dose-response curves when some compounds were tested against multidrug resistant malaria parasite strains guided the optimization process to define a chemical space that led to typical sigmoidal dose-response and complete kill of multidrug resistant parasites. After a structure and property analysis identified such a chemical space, compounds were prepared that displayed suitable activity, ADME, and safety profiles with respect to cytotoxicity and hERG inhibition.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Drug Resistance, Multiple/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Plasmodium falciparum/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Absorption, Physicochemical , Animals , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Dose-Response Relationship, Drug , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Mice , Pyridines/metabolism , Pyridines/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution
10.
Article in English | MEDLINE | ID: mdl-29941635

ABSTRACT

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

11.
J Med Chem ; 61(9): 4213-4227, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29665687

ABSTRACT

Optimization of a chemical series originating from whole-cell phenotypic screening against the human malaria parasite, Plasmodium falciparum, led to the identification of two promising 2,6-disubstituted imidazopyridine compounds, 43 and 74. These compounds exhibited potent activity against asexual blood stage parasites that, together with their in vitro absorption, distribution, metabolism, and excretion (ADME) properties, translated to in vivo efficacy with clearance of parasites in the PfSCID mouse model for malaria within 48 h of treatment.


Subject(s)
Drug Discovery , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Malaria/drug therapy , Plasmodium falciparum/physiology , Pyridines/chemistry , Pyridines/pharmacokinetics , Animals , Disease Models, Animal , Drug Stability , ERG1 Potassium Channel/metabolism , Humans , Imidazoles/metabolism , Imidazoles/therapeutic use , Malaria/genetics , Malaria/metabolism , Mice , Pyridines/metabolism , Pyridines/therapeutic use , Solubility , Structure-Activity Relationship , Tissue Distribution , Water/chemistry
12.
J Antimicrob Chemother ; 73(5): 1279-1290, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29420756

ABSTRACT

Objectives: Novel chemical tools to eliminate malaria should ideally target both the asexual parasites and transmissible gametocytes. Several imidazopyridazines (IMPs) and 2-aminopyridines (2-APs) have been described as potent antimalarial candidates targeting lipid kinases. However, these have not been extensively explored for stage-specific inhibition of gametocytes in Plasmodium falciparum parasites. Here we provide an in-depth evaluation of the gametocytocidal activity of compounds from these chemotypes and identify novel starting points for dual-acting antimalarials. Methods: We evaluated compounds against P. falciparum gametocytes using several assay platforms for cross-validation and stringently identified hits that were further profiled for stage specificity, speed of action and ex vivo efficacy. Physicochemical feature extraction and chemogenomic fingerprinting were applied to explore the kinase inhibition susceptibility profile. Results: We identified 34 compounds with submicromolar activity against late stage gametocytes, validated across several assay platforms. Of these, 12 were potent at <100 nM (8 were IMPs and 4 were 2-APs) and were also active against early stage gametocytes and asexual parasites, with >1000-fold selectivity towards the parasite over mammalian cells. Front-runner compounds targeted mature gametocytes within 48 h and blocked transmission to mosquitoes. The resultant chemogenomic fingerprint of parasites treated with the lead compounds revealed the importance of targeting kinases in asexual parasites and gametocytes. Conclusions: This study encompasses an in-depth evaluation of the kinase inhibitor space for gametocytocidal activity. Potent lead compounds have enticing dual activities and highlight the importance of targeting the kinase superfamily in malaria elimination strategies.


Subject(s)
Aminopyridines/pharmacology , Antimalarials/pharmacology , Phosphotransferases/antagonists & inhibitors , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protein Kinase Inhibitors/pharmacology , Aminopyridines/chemistry , Aminopyridines/isolation & purification , Antimalarials/chemistry , Antimalarials/isolation & purification , Cell Survival/drug effects , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Plasmodium falciparum/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification
13.
Sci Transl Med ; 9(387)2017 04 26.
Article in English | MEDLINE | ID: mdl-28446690

ABSTRACT

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Aminopyridines/therapeutic use , Antimalarials/therapeutic use , Sulfones/therapeutic use , Aminopyridines/pharmacology , Animals , Antimalarials/pharmacology , Female , Malaria/drug therapy , Malaria/enzymology , Male , Mice , Mice, SCID , Parasitic Sensitivity Tests , Plasmodium/drug effects , Plasmodium/pathogenicity , Sulfones/pharmacology
14.
J Med Chem ; 59(21): 9890-9905, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27748596

ABSTRACT

Introduction of water-solubilizing groups on the 5-phenyl ring of a 2-aminopyrazine series led to the identification of highly potent compounds against the blood life-cycle stage of the human malaria parasite Plasmodium falciparum. Several compounds displayed high in vivo efficacy in two different mouse models for malaria, P. berghei-infected mice and P. falciparum-infected NOD-scid IL-2Rγnull mice. One of the frontrunners, compound 3, was identified to also have good pharmacokinetics and additionally very potent activity against the liver and gametocyte parasite life-cycle stages.


Subject(s)
Antimalarials/pharmacology , Life Cycle Stages/drug effects , Malaria/drug therapy , Parasitic Diseases, Animal/drug therapy , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyrazines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Hep G2 Cells , Humans , Mice , Mice, SCID , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Diseases, Animal/parasitology , Parasitic Sensitivity Tests , Plasmodium berghei/growth & development , Plasmodium falciparum/growth & development , Pyrazines/chemistry , Pyrazines/metabolism , Solubility , Structure-Activity Relationship , Water/chemistry
15.
J Med Chem ; 58(21): 8713-22, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26502160

ABSTRACT

Toward improving pharmacokinetics, in vivo efficacy, and selectivity over hERG, structure-activity relationship studies around the central core of antimalarial imidazopyridazines were conducted. This study led to the identification of potent pyrazolopyridines, which showed good in vivo efficacy and pharmacokinetics profiles. The lead compounds also proved to be very potent in the parasite liver and gametocyte stages, which makes them of high interest.


Subject(s)
Antimalarials/chemistry , Antimalarials/therapeutic use , Malaria/drug therapy , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyridines/chemistry , Pyridines/therapeutic use , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Liver/parasitology , Malaria/parasitology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Structure-Activity Relationship
16.
J Med Chem ; 58(18): 7572-9, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26322748

ABSTRACT

Based on the initial optimization of orally active antimalarial 2,4-diamino-thienopyrimidines and with the help of metabolite identification studies, a second generation of derivatives involving changes at the 2- and 4-positions of the thienopyrimidine core were synthesized. Improvements in the physiochemical properties resulted in the identification of 15a, 17a, 32, and 40 as lead molecules with improved in vivo exposure. Furthermore, analogue 40 exhibited excellent in vivo antimalarial activity when dosed orally at 50 mg/kg once daily for 4 days in the Plasmodium berghei mouse model, which is superior to the activity seen with previously reported compounds, and with a slightly improved hERG profile.


Subject(s)
Antimalarials/chemistry , Pyrimidines/chemistry , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Crystallography, X-Ray , Drug Resistance , Ether-A-Go-Go Potassium Channels/physiology , Female , Humans , Malaria/drug therapy , Malaria/parasitology , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Patch-Clamp Techniques , Plasmodium berghei , Plasmodium falciparum/drug effects , Protein Conformation , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Solubility , Structure-Activity Relationship
17.
J Med Chem ; 57(21): 8839-48, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25313449

ABSTRACT

On the basis of our recent results on a novel series of imidazopyridazine-based antimalarials, we focused on identifying compounds with improved aqueous solubility and hERG profile while maintaining metabolic stability and in vitro potency. Toward this objective, 41 compounds were synthesized and evaluated for antiplasmodial activity against NF54 (sensitive) and K1 (multidrug resistant) strains of the malaria parasite Plasmodium falciparum and evaluated for both aqueous solubility and metabolic stability. Selected compounds were tested for in vitro hERG activity and in vivo efficacy in the P. berghei mouse model. Several compounds were identified with significantly improved aqueous solubility, good metabolic stability, and a clean hERG profile relative to a previous frontrunner lead compound. A sulfoxide-based imidazopyridazine analog 45, arising from a prodrug-like strategy, was completely curative in the Plasmodium berghei mouse model at 4 × 50 mg/kg po.


Subject(s)
Antimalarials/chemical synthesis , Pyridazines/chemical synthesis , Sulfones/chemical synthesis , Animals , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Drug Resistance, Multiple , Ether-A-Go-Go Potassium Channels/drug effects , Humans , Malaria, Falciparum/parasitology , Male , Mice , Microsomes, Liver/metabolism , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyridazines/metabolism , Pyridazines/pharmacology , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship , Sulfones/metabolism , Sulfones/pharmacology
18.
J Med Chem ; 57(6): 2789-98, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24568587

ABSTRACT

A novel class of imidazopyridazines identified from whole cell screening of a SoftFocus kinase library was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant strain) and NF54 (sensitive strain). Structure-activity relationship studies led to the identification of highly potent compounds against both strains. Compound 35 was highly active (IC50: K1 = 6.3 nM, NF54 = 7.3 nM) and comparable in potency to artesunate, and 35 exhibited 98% activity in the in vivo P. berghei mouse model (4-day test by Peters) at 4 × 50 mg/kg po. Compound 35 was also assessed against P. falciparum in the in vivo SCID mouse model where the efficacy was found to be more consistent with the in vitro activity. Furthermore, 35 displayed high (78%) rat oral bioavailability with good oral exposure and plasma half-life. Mice exposure at the same dose was 10-fold lower than in rat, suggesting lower oral absorption and/or higher metabolic clearance in mice.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Plasmodium/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Animals , Antimalarials/pharmacokinetics , Biological Availability , Drug Design , Drug Resistance , Drug Stability , Gene Library , Half-Life , High-Throughput Screening Assays , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/psychology , Mice , Mice, SCID , Parasitic Sensitivity Tests , Plasmodium berghei , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
19.
J Med Chem ; 57(3): 1014-22, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24446664

ABSTRACT

A novel series of 2,4-diaminothienopyrimidines with potential as antimalarials was identified from whole-cell high-throughput screening of a SoftFocus ion channel library. Synthesis and structure-activity relationship studies identified compounds with potent antiplasmodial activity and low in vitro cytotoxicity. Several of these analogues exhibited in vivo activity in the Plasmodium berghei mouse model when administered orally. However, inhibition of the hERG potassium channel was identified as a liability for this series.


Subject(s)
Antimalarials/chemical synthesis , Pyrimidines/chemical synthesis , Thiophenes/chemical synthesis , Administration, Oral , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Cell Line , Databases, Chemical , Drug Resistance, Multiple , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Malaria/drug therapy , Malaria/parasitology , Male , Mice , Microsomes, Liver/metabolism , Plasmodium berghei , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
20.
Malar J ; 12: 424, 2013 Nov 16.
Article in English | MEDLINE | ID: mdl-24237770

ABSTRACT

BACKGROUND: Recent whole cell in vitro screening campaigns identified thousands of compounds that are active against asexual blood stages of Plasmodium falciparum at submicromolar concentrations. These hits have been made available to the public, providing many novel chemical starting points for anti-malarial drug discovery programmes. Knowing which of these hits are fast-acting compounds is of great interest. Firstly, a fast action will ensure rapid relief of symptoms for the patient. Secondly, by rapidly reducing the parasitaemia, this could minimize the occurrence of mutations leading to new drug resistance mechanisms.An in vitro assay that provides information about the speed of action of test compounds has been developed by researchers at GlaxoSmithKline (GSK) in Spain. This assay also provides an in vitro measure for the ratio between parasitaemia at the onset of drug treatment and after one intra-erythrocytic cycle (parasite reduction ratio, PRR). Both parameters are needed to determine in vitro killing rates of anti-malarial compounds. A drawback of the killing rate assay is that it takes a month to obtain first results. METHODS: The approach described in the present study is focused only on the speed of action of anti-malarials. This has the advantage that initial results can be achieved within 4-7 working days, which helps to distinguish between fast and slow-acting compounds relatively quickly. It is expected that this new assay can be used as a filter in the early drug discovery phase, which will reduce the number of compounds progressing to secondary, more time-consuming assays like the killing rate assay. RESULTS: The speed of action of a selection of seven anti-malarial compounds was measured with two independent experimental procedures using modifications of the standard [3H]hypoxanthine incorporation assay. Depending on the outcome of both assays, the tested compounds were classified as either fast or non-fast-acting. CONCLUSION: The results obtained for the anti-malarials chloroquine, artesunate, atovaquone, and pyrimethamine are consistent with previous observations, suggesting the methodology is a valid way to rapidly identify fast-acting anti-malarial compounds. Another advantage of the approach is its ability to discriminate between static or cidal compound effects.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Drug Evaluation, Preclinical/methods , Inhibitory Concentration 50 , Parasitic Sensitivity Tests/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL