Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Front Microbiol ; 15: 1327723, 2024.
Article in English | MEDLINE | ID: mdl-38784795

ABSTRACT

Six genes encoding putative high molecular weight penicillin-binding proteins (Pbp) are present in the genome of the ß-lactam-resistant strain Corynebacterium jeikeium K411. In this study, we show that pbp2c, one of these six genes, is present in resistant strains of Corynebacteriaceae but absent from sensitive strains. The molecular study of the pbp2c locus from C. jeikeium and its heterologous expression in Corynebacterium glutamicum allowed us to show that Pbp2c confers high levels of ß-lactam resistance to the host and is under the control of a ß-lactam-induced regulatory system encoded by two adjacent genes, jk0410 and jk0411. The detection of this inducible resistance may require up to 48 h of incubation, particularly in Corynebacterium amycolatum. Finally, the Pbp2c-expressing strains studied were resistant to all the ß-lactam antibiotics tested, including carbapenems, ceftaroline, and ceftobiprole.

2.
J Antimicrob Chemother ; 77(12): 3496-3503, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36253948

ABSTRACT

BACKGROUND: Mycobacterium abscessus (Mabs), a rapidly growing Mycobacterium species, is considered an MDR organism. Among the standard antimicrobial multi-drug regimens against Mabs, amikacin is considered as one of the most effective. Parenteral amikacin, as a consequence of its inability to penetrate inside the cells, is only active against extracellular mycobacteria. The use of inhaled liposomal amikacin may yield improved intracellular efficacy by targeting Mabs inside the cells, while reducing its systemic toxicity. OBJECTIVES: To evaluate the colocalization of an amikacin liposomal inhalation suspension (ALIS) with intracellular Mabs, and then to measure its intracellular anti-Mabs activity. METHODS: We evaluated the colocalization of ALIS with Mabs in eukaryotic cells such as macrophages (THP-1 and J774.2) or pulmonary epithelial cells (BCi-NS1.1 and MucilAir), using a fluorescent ALIS and GFP-expressing Mabs, to test whether ALIS reaches intracellular Mabs. We then evaluated the intracellular anti-Mabs activity of ALIS inside macrophages using cfu and/or luminescence. RESULTS: Using confocal microscopy, we demonstrated fluorescent ALIS and GFP-Mabs colocalization in macrophages and epithelial cells. We also showed that ALIS was active against intracellular Mabs at a concentration of 32 to 64 mg/L, at 3 and 5 days post-infection. Finally, ALIS intracellular activity was confirmed when tested against 53 clinical Mabs isolates, showing intracellular growth reduction for nearly 80% of the isolates. CONCLUSIONS: Our experiments demonstrate the intracellular localization and intracellular contact between Mabs and ALIS, and antibacterial activity against intracellular Mabs, showing promise for its future use for Mabs pulmonary infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium , Humans , Amikacin/pharmacology , Eukaryotic Cells , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Liposomes , Microbial Sensitivity Tests
3.
PLoS Pathog ; 18(8): e1010771, 2022 08.
Article in English | MEDLINE | ID: mdl-35960766

ABSTRACT

ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus. This prompted us to investigate the function of M. abscessus EsxU and EsxT in vitro and in vivo. Herein, we show that EsxU and EsxT are substrates of ESX-4 and form a stable 1:1 heterodimer that permeabilizes artificial membranes. While expression of esxU and esxT was up-regulated in M. abscessus-infected macrophages, their absence in an esxUT deletion mutant prevented phagosomal membrane disruption while maintaining M. abscessus in an unacidified phagosome. Unexpectedly, the esxUT deletion was associated with a hyper-virulent phenotype, characterised by increased bacterial loads and mortality in mouse and zebrafish infection models. Collectively, these results demonstrate that the presence of EsxU and EsxT dampens survival and persistence of M. abscessus during infection.


Subject(s)
Mycobacterium abscessus , Mycobacterium marinum , Mycobacterium tuberculosis , Mycobacterium , Type VII Secretion Systems , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mice , Mycobacterium/genetics , Mycobacterium abscessus/genetics , Mycobacterium marinum/metabolism , Mycobacterium tuberculosis/genetics , Type VII Secretion Systems/genetics , Type VII Secretion Systems/metabolism , Zebrafish/metabolism
4.
Microbiol Spectr ; 10(3): e0019222, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35583329

ABSTRACT

The immunoglobulin A (IgA) status of cystic fibrosis (CF) patients, presenting with or without a non-tuberculous mycobacterial (NTM) infection, has to date not been fully elucidated toward two antigenic preparations previously described. We have chosen to determine the clinical values of an IgA ELISA for the diagnosis of NTM and/or Mycobacterium abscessus infections in CF patients. One hundred and 73 sera from CF patients, comprising 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls were assessed. IgA levels were evaluated by indirect ELISAs using a surface antigenic extract named TLR2eF for TLR2 positive extract and a recombinant protein, the phospholipase C (rMAB_0555 or rPLC). These assays revealed a sensitivity of 52.6% (95% CI = 35.8% to 69%) and 42.1% (95% CI = 26.3% to 59.2%) using TLR2eF and rPLC, respectively, and respective specificities of 92.6% (95% CI = 87.5% to 96.1%) and 92% (95% CI = 86.7% to 95.7%) for samples culture positive for M. abscessus. Overall sensitivity and specificity of 66.7% and 85.4%, respectively, were calculated for IgA detection in M. abscessus-culture positive CF patients, when we combine the results of the two used antigens, thus demonstrating the efficiency in detection of positive cases for these two antigens with IgA isotype. CF patients with a positive culture for M. abscessus had the highest IgA titers against TLR2eF and rPLC. The diagnosis of NTM infections, including those due to M. abscessus, can be improved by the addition of an IgA serological assay, especially when cultures, for example, are negative. Based on these promising results, a serological follow-up of a larger number of patients should be performed to determine if the IgA response may be correlated with an active/acute infection state or a very recent infection. IMPORTANCE Mycobacterium abscessus is currently the most frequently isolated rapid growing mycobacterium in human pathology and the major one involved in lung infections. It has recently emerged as responsible for severe pulmonary infections in patients with cystic fibrosis (CF) or those who have undergone lung transplantation. In addition, it represents the most antibiotic resistant mycobacterial species. However, despite its increasing clinical importance, very little is known about the use of M. abscessus parietal compounds and the host response. This has led to the development of serological tests to measure the antibody response in infected patients, and potentially to link this to the culture of respiratory samples. Herein, we describe an important analysis of the serological IgA response from CF patients, and we demonstrate the full diagnostic usefulness of this assay in the diagnosis of NTM infections, and more particularly M. abscessus, in CF patients.


Subject(s)
Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Humans , Immunoglobulin A , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/physiology , Nontuberculous Mycobacteria
5.
Am J Respir Cell Mol Biol ; 66(4): 439-451, 2022 04.
Article in English | MEDLINE | ID: mdl-35081328

ABSTRACT

Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.


Subject(s)
Mycobacterium Infections, Nontuberculous , Neutrophils , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dual Oxidases , Mice , Mycobacterium Infections, Nontuberculous/microbiology , Roscovitine/pharmacology , Roscovitine/therapeutic use , Zebrafish
6.
J Cyst Fibros ; 21(2): 353-360, 2022 03.
Article in English | MEDLINE | ID: mdl-34511392

ABSTRACT

BACKGROUND: Culture conditions sometimes make it difficult to detect non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus, an emerging cystic fibrosis (CF) pathogen. The diagnosis of NTM positive cases not detected by classical culture methods might benefit from the development of a serological assay. METHODS: As part of a diagnostic accuracy study, a total of 173 sera CF-patients, including 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls (HC) were evaluated. Four M. abscessus antigens were used separately, comprising two surface extracts (Interphase (INP) and a TLR2 positive extract (TLR2eF)) and two recombinant proteins (rMAB_2545c and rMAB_0555 also known as the phospholipase C (rPLC)). RESULTS: TLR2eF and rPLC were the most efficient antigens to discriminate NTM-culture positive CF-patients from NTM-culture negative CF-patients. The best clinical values were obtained for the detection of M. abscessus-culture positive CF-patients; with sensitivities for the TLR2eF and rPLC of 81.2% (95% CI:65.7-92.3%) and 87.9% (95% CI:71.9-95.6%) respectively, and specificities of 88.9% (95% CI:85.3-94.8%) and 84.8% (95% CI:80.6-91.5%) respectively. When considering as positive all sera, giving a positive response in at least one of the two tests, and, as negative, all sera negative for both tests, we obtained a sensitivity of 93.9% and a specificity of 80.7% for the detection of M. abscessus-culture positive CF-patients. CONCLUSION: High antibody titers against TLR2eF and rPLC were obtained in M. abscessus-culture positive CF-patients, allowing us to consider these serological markers as potential tools in the detection of CF-patients infected with M. abscessus.


Subject(s)
Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Biomarkers , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Nontuberculous Mycobacteria
7.
Article in English | MEDLINE | ID: mdl-32984067

ABSTRACT

Mycobacterium abscessus is a prevalent pathogenic mycobacterium in cystic fibrosis (CF) patients and one of the most highly drug resistant mycobacterial species to antimicrobial agents. It possesses the property to transition from a smooth (S) to a rough (R) morphotype, thereby influencing the host innate immune response. This transition from the S to the R morphotype takes place in patients with an exacerbation of the disease and a persistence of M. abscessus. We have previously shown that the exacerbation of the Toll-like receptor 2 (TLR2)-mediated inflammatory response, following this S to R transition, is essentially due to overproduction of bacilli cell envelope surface compounds, which we were able to extract by mechanical treatment and isolation by solvent partition in a fraction called interphase. Here, we set up a purification procedure guided by bioactivity to isolate a fraction from the R variant of M. abscessus cells which exhibits a high TLR2 stimulating activity, referred to as TLR2-enriched fraction (TLR2eF). As expected, TLR2eF was found to contain several lipoproteins and proteins known to be stimuli for TLR2. Vaccination with TLR2eF showed no protection toward an M. abscessus aerosol challenge, but provided mild protection in ΔF508 mice and their FVB littermates when intravenously challenged by M. abscessus. Interestingly however, antibodies against TLR2eF compounds were detected during disease in CF patients. In conclusion, we show the potential for compounds in TLR2eF as vaccine and diagnostic candidates, in order to enhance diagnosis, prevent and/or treat M. abscessus-related infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium , Vaccines , Animals , Humans , Mice , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/prevention & control , Toll-Like Receptor 2
8.
Article in English | MEDLINE | ID: mdl-32253217

ABSTRACT

Mycobacterium abscessus lung infections remain difficult to treat. Recent studies have recognized the power of new combinations of antibiotics, such as bedaquiline and imipenem, although in vitro data have questioned this combination. We report that the efficacy of bedaquiline-imipenem combination treatment relies essentially on the activity of bedaquiline in a C3HeB/FeJ mice model of infection with a rough variant of M. abscessus The addition of imipenem contributed to clearing the infection in the spleen.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Anti-Bacterial Agents/pharmacology , Diarylquinolines , Imipenem/pharmacology , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy
9.
ChemistryOpen ; 9(3): 351-365, 2020 03.
Article in English | MEDLINE | ID: mdl-32211280

ABSTRACT

Non-tuberculous mycobacterium (NTM) infections, such as those caused by Mycobacterium abscessus, are increasing globally. Due to their intrinsic drug resistance, M. abscessus pulmonary infections are often difficult to cure using standard chemotherapy. We previously demonstrated that a piperidinol derivative, named PIPD1, is an efficient molecule both against M. abscessus and Mycobacterium tuberculosis, the agent of tuberculosis, by targeting the mycolic acid transporter MmpL3. These results prompted us to design and synthesize a series of piperidinol derivatives and to determine the biological activity against M. abscessus. Structure-activity relationship (SAR) studies pointed toward specific sites on the scaffold that can tolerate slight modifications. Overall, these results identified FMD-88 as a new promising active analogue against M. abscessus. Also, we determined the pharmacokinetics properties of PIPD1 and showed that intraperitoneal administration of this compound resulted in promising serum concentration and an elimination half-life of 3.2 hours.


Subject(s)
Antitubercular Agents/chemistry , Mycobacterium abscessus/drug effects , Tuberculosis/drug therapy , Antitubercular Agents/pharmacokinetics , Biological Transport , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Models, Molecular , Mycolic Acids/metabolism , Structure-Activity Relationship
10.
PLoS Pathog ; 15(11): e1008069, 2019 11.
Article in English | MEDLINE | ID: mdl-31703112

ABSTRACT

Free-living amoebae are thought to represent an environmental niche in which amoeba-resistant bacteria may evolve towards pathogenicity. To get more insights into factors playing a role for adaptation to intracellular life, we characterized the transcriptomic activities of the emerging pathogen Mycobacterium abscessus in amoeba and murine macrophages (Mϕ) and compared them with the intra-amoebal transcriptome of the closely related, but less pathogenic Mycobacterium chelonae. Data on up-regulated genes in amoeba point to proteins that allow M. abscessus to resist environmental stress and induce defense mechanisms, as well as showing a switch from carbohydrate carbon sources to fatty acid metabolism. For eleven of the most upregulated genes in amoeba and/or Mϕ, we generated individual gene knock-out M. abscessus mutant strains, from which ten were found to be attenuated in amoeba and/or Mϕ in subsequence virulence analyses. Moreover, transfer of two of these genes into the genome of M. chelonae increased the intra-Mϕ survival of the recombinant strain. One knock-out mutant that had the gene encoding Eis N-acetyl transferase protein (MAB_4532c) deleted, was particularly strongly attenuated in Mϕ. Taken together, M. abscessus intra-amoeba and intra-Mϕ transcriptomes revealed the capacity of M. abscessus to adapt to an intracellular lifestyle, with amoeba largely contributing to the enhancement of M. abscessus intra-Mϕ survival.


Subject(s)
Amoeba/genetics , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium abscessus/pathogenicity , Transcriptome , Virulence Factors/genetics , Virulence/genetics , Amoeba/growth & development , Amoeba/microbiology , Animals , Bacterial Proteins/genetics , Macrophages/microbiology , Mice , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/genetics , Mycobacterium abscessus/isolation & purification
11.
ACS Infect Dis ; 5(9): 1597-1608, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31299146

ABSTRACT

Twelve new Cyclophostin and Cyclipostins analogues (CyC19-30) were synthesized, thus extending our series to 38 CyCs. Their antibacterial activities were evaluated against four pathogenic mycobacteria (Mycobacterium abscessus, Mycobacterium marinum, Mycobacterium bovis BCG, and Mycobacterium tuberculosis) and two Gram negative bacteria. The CyCs displayed very low toxicity toward host cells and were only active against mycobacteria. Importantly, several CyCs were active against extracellular M. abscessus (CyC17/CyC18ß/CyC25/CyC26) or intramacrophage residing mycobacteria (CyC7(α,ß)/CyC8(α,ß)) with minimal inhibitory concentrations (MIC50) values comparable to or better than those of amikacin or imipenem, respectively. An activity-based protein profiling combined with mass spectrometry allowed identification of the potential target enzymes of CyC17/CyC26, mostly being involved in lipid metabolism and/or in cell wall biosynthesis. Overall, these results strengthen the selective activity of the CyCs against mycobacteria, including the most drug-resistant M. abscessus, through the cumulative inhibition of a large number of Ser- and Cys-enzymes participating in key physiological processes.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacteria/growth & development , Organophosphorus Compounds/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Structure , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/growth & development , Mycobacterium bovis/drug effects , Mycobacterium bovis/growth & development , Mycobacterium marinum/drug effects , Mycobacterium marinum/growth & development , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology
12.
Front Microbiol ; 10: 905, 2019.
Article in English | MEDLINE | ID: mdl-31114557

ABSTRACT

Mycobacterium abscessus, a pathogen responsible for severe lung infections in cystic fibrosis patients, exhibits either smooth (S) or rough (R) morphotypes. The S-to-R transition correlates with inhibition of the synthesis and/or transport of glycopeptidolipids (GPLs) and is associated with an increase of pathogenicity in animal and human hosts. Lsr2 is a small nucleoid-associated protein highly conserved in mycobacteria, including M. abscessus, and is a functional homolog of the heat-stable nucleoid-structuring protein (H-NS). It is essential in Mycobacterium tuberculosis but not in the non-pathogenic model organism Mycobacterium smegmatis. It acts as a master transcriptional regulator of multiple genes involved in virulence and immunogenicity through binding to AT-rich genomic regions. Previous transcriptomic studies, confirmed here by quantitative PCR, showed increased expression of lsr2 (MAB_0545) in R morphotypes when compared to their S counterparts, suggesting a possible role of this protein in the virulence of the R form. This was addressed by generating lsr2 knock-out mutants in both S (Δlsr2-S) and R (Δlsr2-R) variants, demonstrating that this gene is dispensable for M. abscessus growth. We show that the wild-type S variant, Δlsr2-S and Δlsr2-R strains were more sensitive to H2O2 as compared to the wild-type R variant of M. abscessus. Importantly, virulence of the Lsr2 mutants was considerably diminished in cellular models (macrophage and amoeba) as well as in infected animals (mouse and zebrafish). Collectively, these results emphasize the importance of Lsr2 in M. abscessus virulence.

14.
J Vis Exp ; (139)2018 09 27.
Article in English | MEDLINE | ID: mdl-30320743

ABSTRACT

What differentiates Mycobacterium abscessus from other saprophytic mycobacteria is the ability to resist phagocytosis by human macrophages and the ability to multiply inside such cells. These virulence traits render M. abscessus pathogenic, especially in vulnerable hosts with underlying structural lung disease, such as cystic fibrosis, bronchiectasis or tuberculosis. How patients become infected with M. abscessus remains unclear. Unlike many mycobacteria, M. abscessus is not found in the environment but might reside inside amoebae, environmental phagocytes that represent a potential reservoir for M. abscessus. Indeed, M. abscessus is resistant to amoebal phagocytosis and the intra-amoeba life seems to increase M. abscessus virulence in an experimental model of infection. However, little is known about M. abscessus virulence in itself. To decipher the genes conferring an advantage to M. abscessus intracellular life, a screening of a M. abscessus transposon mutant library was developed. In parallel, a method of RNA extraction from intracellular Mycobacteria after co-culture with amoebae was developed. This method was validated and allowed the sequencing of whole M. abscessus transcriptomes inside the cells; providing, for the first time, a global view on M. abscessus adaptation to intracellular life. Both approaches give us an insight into M. abscessus virulence factors that enable M. abscessus to colonize the airways in humans.


Subject(s)
Eukaryota , Mycobacterium abscessus/genetics , Mycobacterium abscessus/pathogenicity , Phagocytes/microbiology , Humans , Virulence , Virulence Factors/genetics
15.
Proc Natl Acad Sci U S A ; 115(43): E10147-E10156, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30301802

ABSTRACT

Mycobacterium abscessus is a peculiar rapid-growing Mycobacterium (RGM) capable of surviving within eukaryotic cells thanks to an arsenal of virulence genes also found in slow-growing mycobacteria (SGM), such as Mycobacterium tuberculosis A screen based on the intracellular survival in amoebae and macrophages (MΦ) of an M. abscessus transposon mutant library revealed the important role of MAB_0855, a yet uncharacterized Mycobacterial membrane protein Large (MmpL). Large-scale comparisons with SGM and RGM genomes uncovered MmpL12 proteins as putative orthologs of MAB_0855 and a locus-scale synteny between the MAB_0855 and Mycobacterium chelonae mmpL8 loci. A KO mutant of the MAB_0855 gene, designated herein as mmpL8MAB , had impaired adhesion to MΦ and displayed a decreased intracellular viability. Despite retaining the ability to block phagosomal acidification, like the WT strain, the mmpL8MAB mutant was delayed in damaging the phagosomal membrane and in making contact with the cytosol. Virulence attenuation of the mutant was confirmed in vivo by impaired zebrafish killing and a diminished propensity to induce granuloma formation. The previously shown role of MmpL in lipid transport prompted us to investigate the potential lipid substrates of MmpL8MAB Systematic lipid analysis revealed that MmpL8MAB was required for the proper expression of a glycolipid entity, a glycosyl diacylated nonadecyl diol (GDND) alcohol comprising different combinations of oleic and stearic acids. This study shows the importance of MmpL8MAB in modifying interactions between the bacteria and phagocytic cells and in the production of a previously unknown glycolipid family.


Subject(s)
Bacterial Proteins/metabolism , Glycolipids/metabolism , Mycobacterium abscessus/metabolism , Virulence Factors/metabolism , Virulence/physiology , Amoeba/microbiology , Animals , Biological Transport/physiology , Cell Line , Cytosol/metabolism , Humans , Lipids , Macrophages/metabolism , Macrophages/microbiology , Membrane Proteins/metabolism , Mice , Phagosomes/microbiology , Zebrafish/microbiology
16.
Proc Natl Acad Sci U S A ; 115(5): E1002-E1011, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29343644

ABSTRACT

Mycobacterium abscessus, a rapidly growing mycobacterium (RGM) and an opportunistic human pathogen, is responsible for a wide spectrum of clinical manifestations ranging from pulmonary to skin and soft tissue infections. This intracellular organism can resist the bactericidal defense mechanisms of amoebae and macrophages, an ability that has not been observed in other RGM. M. abscessus can up-regulate several virulence factors during transient infection of amoebae, thereby becoming more virulent in subsequent respiratory infections in mice. Here, we sought to identify the M. abscessus genes required for replication within amoebae. To this end, we constructed and screened a transposon (Tn) insertion library of an M. abscessus subspecies massiliense clinical isolate for attenuated clones. This approach identified five genes within the ESX-4 locus, which in M. abscessus encodes an ESX-4 type VII secretion system that exceptionally also includes the ESX conserved EccE component. To confirm the screening results and to get further insight into the contribution of ESX-4 to M. abscessus growth and survival in amoebae and macrophages, we generated a deletion mutant of eccB4 that encodes a core structural element of ESX-4. This mutant was less efficient at blocking phagosomal acidification than its parental strain. Importantly, and in contrast to the wild-type strain, it also failed to damage phagosomes and showed reduced signs of phagosome-to-cytosol contact, as demonstrated by a combination of cellular and immunological assays. This study attributes an unexpected and genuine biological role to the underexplored mycobacterial ESX-4 system and its substrates.


Subject(s)
Amoeba/microbiology , Mycobacterium abscessus/pathogenicity , Phagosomes/microbiology , Type IV Secretion Systems/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Caspase 1/metabolism , Chromatography, Thin Layer , Cytosol/metabolism , Enzyme Activation , Flow Cytometry , Galectin 3/metabolism , Gene Deletion , Genomics , Humans , Lipids/chemistry , Macrophages/microbiology , Mutation , Mycobacterium abscessus/genetics , Mycobacterium tuberculosis/pathogenicity , THP-1 Cells , Virulence
17.
Article in English | MEDLINE | ID: mdl-28096155

ABSTRACT

Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a ß-lactam (cefoxitin or imipenem). The triple combination is used without any ß-lactamase inhibitor, even though Mabscessus produces the broad-spectrum ß-lactamase BlaMab We determine whether inhibition of BlaMab by avibactam improves the activity of imipenem against M. abscessus The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of BlaMab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 µg/ml), amikacin (32 µg/ml), and avibactam (4 µg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 µg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 µg/ml) and high (32 µg/ml) dosages of imipenem, respectively. In vivo inhibition of BlaMab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding BlaMab was induced (20-fold) in the infected macrophages. Inhibition of BlaMab by avibactam improved the efficacy of imipenem against M. abscessusin vitro, in macrophages, and in zebrafish embryos, indicating that this ß-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of BlaMab, since the production of the ß-lactamase is inducible in macrophages.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Imipenem/pharmacology , Mycobacterium/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/pharmacology , Amikacin/pharmacology , Animals , Blotting, Western , Embryo, Nonmammalian/microbiology , Humans , Macrophages/microbiology , Microbial Sensitivity Tests , Mycobacterium/genetics , Mycobacterium/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish
18.
Infect Immun ; 84(10): 2895-903, 2016 10.
Article in English | MEDLINE | ID: mdl-27481243

ABSTRACT

Mycobacterium abscessus is an emerging pathogenic mycobacterium involved in pulmonary and mucocutaneous infections, presenting a serious threat for patients with cystic fibrosis (CF). The lack of an efficient treatment regimen and the emergence of multidrug resistance in clinical isolates require the development of new therapeutic strategies against this pathogen. Reverse genetics has revealed genes that are present in M. abscessus but absent from saprophytic mycobacteria and that are potentially involved in pathogenicity. Among them, MAB_3593 encodes MgtC, a known virulence factor involved in intramacrophage survival and adaptation to Mg(2+) deprivation in several major bacterial pathogens. Here, we demonstrated a strong induction of M. abscessus MgtC at both the transcriptional and translational levels when bacteria reside inside macrophages or upon Mg(2+) deprivation. Moreover, we showed that M. abscessus MgtC was recognized by sera from M. abscessus-infected CF patients. The intramacrophage growth (J774 or THP1 cells) of a M. abscessus knockout mgtC mutant was, however, not significantly impeded. Importantly, our results indicated that inhibition of MgtC in vivo through immunization with M. abscessus mgtC DNA, formulated with a tetrafunctional amphiphilic block copolymer, exerted a protective effect against an aerosolized M. abscessus challenge in CF (ΔF508 FVB) mice. The formulated DNA immunization was likely associated with the production of specific MgtC antibodies, which may stimulate a protective effect by counteracting MgtC activity during M. abscessus infection. These results emphasize the importance of M. abscessus MgtC in vivo and provide a basis for the development of novel therapeutic tools against pulmonary M. abscessus infections in CF patients.


Subject(s)
Bacterial Vaccines/immunology , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium/immunology , Virulence Factors/immunology , Animals , Bacterial Proteins/genetics , Blotting, Western , Cystic Fibrosis/complications , Disease Models, Animal , Female , Macrophages/metabolism , Macrophages/microbiology , Mice , Mycobacterium Infections, Nontuberculous/prevention & control , Virulence Factors/genetics , Virulence Factors/metabolism
19.
Proc Natl Acad Sci U S A ; 113(29): E4228-37, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27385830

ABSTRACT

Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the ß-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.


Subject(s)
Hydro-Lyases/physiology , Mycobacterium Infections/enzymology , Mycobacterium/pathogenicity , Zebrafish Proteins/physiology , Animals , Cell Line , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/immunology , Embryo, Nonmammalian/microbiology , Macrophages/immunology , Macrophages/microbiology , Mice , Mycobacterium Infections/microbiology , Neutrophils/immunology , Virulence , Zebrafish/immunology , Zebrafish/metabolism , Zebrafish/microbiology
20.
Hum Vaccin Immunother ; 12(3): 751-6, 2016 03 03.
Article in English | MEDLINE | ID: mdl-26618824

ABSTRACT

A great number of cystic fibrosis (CF) pathogens such as Pseudomonas aeruginosa, the Burkholderia cepacia and the Mycobacterium abscessus complex raised difficult therapeutic problems due to their intrinsic multi-resistance to numerous antibiotics. Vaccine strategies represent one of the key weapons against these multi-resistant bacteria in a number of clinical settings like CF. Different strategies are considered in order to develop such vaccines, linked either to priming the host response, or by exploiting genomic data derived from the bacterium. Interestingly, virulence factors synthesized by various pathogens might serve as targets for vaccine development and have been, for example, evaluated in the context of CF.


Subject(s)
Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Cystic Fibrosis/complications , Drug Discovery/methods , Pneumonia, Bacterial/prevention & control , Burkholderia cepacia/immunology , Drug Discovery/trends , Humans , Mycobacterium/immunology , Pseudomonas aeruginosa/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...