Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 176: 113837, 2021 09.
Article in English | MEDLINE | ID: mdl-34144089

ABSTRACT

Compared to chemicals that continue to dominate the overall pharmaceutical market, protein therapeutics offer the advantages of higher specificity, greater activity, and reduced toxicity. While nearly all existing therapeutic proteins were developed against soluble or extracellular targets, the ability for proteins to enter cells and target intracellular compartments can significantly broaden their utility for a myriad of exiting targets. Given their physical, chemical, biological instability that could induce adverse effects, and their limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. In this context, as natural protein nanocarriers, extracellular vesicles (EVs) hold great promise. Nevertheless, if not present naturally, bringing an interest protein into EV is not an easy task. In this review, we will explore methods used to load extrinsic protein into EVs and compare these natural vectors to their close synthetic counterparts, liposomes/lipid nanoparticles, to induce intracellular protein delivery.


Subject(s)
Extracellular Vesicles/metabolism , Liposomes , Nanoparticles , Proteins/administration & dosage , Animals , Drug Delivery Systems , Humans , Proteins/adverse effects , Proteins/metabolism
2.
Biomaterials ; 231: 119675, 2020 02.
Article in English | MEDLINE | ID: mdl-31838346

ABSTRACT

In regards to their key role in intercellular communication, extracellular vesicles (EVs) have a strong potential as bio-inspired drug delivery systems (DDS). With the aim of circumventing some of their well-known issues (production yield, drug loading yield, pharmacokinetics), we specifically focused on switching the biological vision of these entities to a more physico-chemical one, and to consider and fine-tune EVs as synthetic vectors. To allow a rational use, we first performed a full physico-chemical (size, concentration, surface charge, cryoTEM), biochemical (western blot, proteomics, lipidomics, transcriptomics) and biological (cell internalisation) characterisation of murine mesenchymal stem cell (mMSC)-derived EVs. A stability study based on evaluating the colloidal behaviour of obtained vesicles was performed in order to identify optimal storage conditions. We evidenced the interest of using EVs instead of liposomes, in regards to target cell internalisation efficiency. EVs were shown to be internalised through a caveolae and cholesterol-dependent pathway, following a different endocytic route than liposomes. Then, we characterised the effect of physical methods scarcely investigated with EVs (extrusion through 50 nm membranes, freeze-drying, sonication) on EV size, concentration, structure and cell internalisation properties. Our extensive characterisation of the effect of these physical processes highlights their promise as loading methods to make EVs efficient delivery vehicles.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Drug Delivery Systems , Freeze Drying , Liposomes , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...