Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107817, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37744034

ABSTRACT

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are dysregulated in many pervasive diseases. Recently, we discovered that ERK1/2 is oxidized by signal-generated hydrogen peroxide in various cell types. Since the putative sites of oxidation lie within or near ERK1/2's ligand-binding surfaces, we investigated how oxidation of ERK2 regulates interactions with the model substrates Sub-D and Sub-F. These studies revealed that ERK2 undergoes sulfenylation at C159 on its D-recruitment site surface and that this modification modulates ERK2 activity differentially between substrates. Integrated biochemical, computational, and mutational analyses suggest a plausible mechanism for peroxide-dependent changes in ERK2-substrate interactions. Interestingly, oxidation decreased ERK2's affinity for some D-site ligands while increasing its affinity for others. Finally, oxidation by signal-generated peroxide enhanced ERK1/2's ability to phosphorylate ribosomal S6 kinase A1 (RSK1) in HeLa cells. Together, these studies lay the foundation for examining crosstalk between redox- and phosphorylation-dependent signaling at the level of kinase-substrate selection.

2.
J Nat Prod ; 82(10): 2744-2753, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31557021

ABSTRACT

Traditional medicinal plants are a rich source of antimicrobials; however, the bioactive peptide constituents of most ethnobotanical species remain largely unexplored. Herein, PepSAVI-MS, a mass spectrometry-based peptidomics pipeline, was implemented for antimicrobial peptide (AMP) discovery in the medicinal plant Amaranthus tricolor. This investigation revealed a novel 1.7 kDa AMP with strong activity against Escherichia coli ATCC 25922, deemed Atr-AMP1. Initial efforts to determine the sequence of Atr-AMP1 utilized chemical derivatization and enzymatic digestion to provide information about specific residues and post-translational modifications. EThcD (electron-transfer/higher-energy collision dissociation) produced extensive backbone fragmentation and facilitated de novo sequencing, the results of which were consistent with orthogonal characterization experiments. Additionally, multistage HCD (higher-energy collisional dissociation) facilitated discrimination between isobaric leucine and isoleucine. These results revealed a positively charged proline-rich peptide present in a heterogeneous population of multiple peptidoforms, possessing several post-translational modifications including a disulfide bond, methionine oxidation, and proline hydroxylation. Additional bioactivity screening of a simplified fraction containing Atr-AMP1 revealed activity against Staphylococcus aureus LAC, demonstrating activity against both a Gram-negative and a Gram-positive bacterial species unlike many known short chain proline-rich antimicrobial peptides.


Subject(s)
Amaranthus/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Mass Spectrometry/methods , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Proline
SELECTION OF CITATIONS
SEARCH DETAIL
...