Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 299, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864136

ABSTRACT

The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , RNA, Ribosomal/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Gastrointestinal Microbiome/genetics
2.
Nucleic Acids Res ; 49(15): e87, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34125893

ABSTRACT

Proofreading polymerases have 3' to 5' exonuclease activity that allows the excision and correction of mis-incorporated bases during DNA replication. In a previous study, we demonstrated that in addition to correcting substitution errors and lowering the error rate of DNA amplification, proofreading polymerases can also edit PCR primers to match template sequences. Primer editing is a feature that can be advantageous in certain experimental contexts, such as amplicon-based microbiome profiling. Here we develop a set of synthetic DNA standards to report on primer editing activity and use these standards to dissect this phenomenon. The primer editing standards allow next-generation sequencing-based enzymological measurements, reveal the extent of editing, and allow the comparison of different polymerases and cycling conditions. We demonstrate that proofreading polymerases edit PCR primers in a concentration-dependent manner, and we examine whether primer editing exhibits any sequence specificity. In addition, we use these standards to show that primer editing is tunable through the incorporation of phosphorothioate linkages. Finally, we demonstrate the ability of primer editing to robustly rescue the drop-out of taxa with 16S rRNA gene-targeting primer mismatches using mock communities and human skin microbiome samples.


Subject(s)
DNA Primers/genetics , DNA-Directed DNA Polymerase/genetics , Exonucleases/genetics , Nucleic Acid Amplification Techniques/methods , DNA Replication/genetics , High-Throughput Nucleotide Sequencing , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...