ABSTRACT
Strong confinement, in all dimensions, and high mechanical frequencies are highly desirable for quantum optomechanical applications. We show that GaAs/AlAs micropillar cavities fully confine not only photons but also extremely high frequency (19-95 GHz) acoustic phonons. A strong increase of the optomechanical coupling upon reducing the pillar size is observed, together with record room-temperature Q-frequency products of 10^{14}. These mechanical resonators can integrate quantum emitters or polariton condensates, opening exciting perspectives at the interface with nonlinear and quantum optics.
ABSTRACT
Nanophononic Bloch oscillations and Wannier-Stark ladders have been recently predicted to exist in specifically tailored structures formed by coupled nanocavities. Using pump-probe coherent phonon generation techniques we demonstrate that Bloch oscillations of terahertz acoustic phonons can be directly generated and probed in these complex nanostructures. In addition, by Fourier transforming the time traces we had access to the proper eigenmodes in the frequency domain, thus evidencing the related Wannier-Stark ladder. The observed Bloch oscillation dynamics are compared with simulations based on a model description of the coherent phonon generation and photoelastic detection processes.
ABSTRACT
We present an ultrahigh resolution Raman study of the lifetime of 1 THz acoustic phonons confined in nanocavities. We demonstrate that the cavity Q factor can be controlled by design. Anharmonicity contributes only marginally to limit the cavity phonon lifetime, even at room temperature, while thickness fluctuations in the scale of 1/10 of a unit cell are the main limitation for the performance of THz phonon cavities.
ABSTRACT
Ultrafast coherent generation of acoustic phonons is studied in a semiconductor optical microcavity. The confinement of the light pulse amplifies both the generation and the detection of phonons. In addition, the standing wave character of the photon field modifies the generation and detection phonon bandwidth. Coherent generation experiments in an acoustic nanocavity embedded in an optical microcavity are reported as a function of laser energy and incidence angle to evidence the separate role of the optical and exciton resonances. Amplified signals and phonon spectra modified by the optical confinement are demonstrated.
ABSTRACT
Of a total of 18,068 mosquitoes (361 pools) collected in south-eastern Trinidad forests from December 1988 to May 1989, 47 species belonging to 14 genera were identified. Five yellow fever virus isolates were made from Haemagogus janthinomys and one from Sabethes chloropterus. All the other pools of mosquitoes examined were negative for the virus. The mosquito isolates were made in December and January. In addition, in late February and early March, 2 infected howler monkeys (Alouatta sp.) were detected. Since March, despite continued surveillance, no yellow fever virus has been detected in mosquitoes or monkeys. There has been no reported human infection.