Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 25(21): 6406-6416, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31371342

ABSTRACT

PURPOSE: OX40 agonist-based combinations are emerging as a novel avenue to improve the effectiveness of cancer immunotherapy. To better guide its clinical development, we characterized the role of the OX40 pathway in tumor-reactive immune cells. We also evaluated combining OX40 agonists with targeted therapy to combat resistance to cancer immunotherapy.Experimental Design: We utilized patient-derived tumor-infiltrating lymphocytes (TILs) and multiple preclinical models to determine the direct effect of anti-OX40 agonistic antibodies on tumor-reactive CD8+ T cells. We also evaluated the antitumor activity of an anti-OX40 antibody plus PI3Kß inhibition in a transgenic murine melanoma model (Braf mutant, PTEN null), which spontaneously develops immunotherapy-resistant melanomas. RESULTS: We observed elevated expression of OX40 in tumor-reactive CD8+ TILs upon encountering tumors; activation of OX40 signaling enhanced their cytotoxic function. OX40 agonist antibody improved the antitumor activity of CD8+ T cells and the generation of tumor-specific T-cell memory in vivo. Furthermore, combining anti-OX40 with GSK2636771, a PI3Kß-selective inhibitor, delayed tumor growth and extended the survival of mice with PTEN-null melanomas. This combination treatment did not increase the number of TILs, but it instead significantly enhanced proliferation of CD8+ TILs and elevated the serum levels of CCL4, CXCL10, and IFNγ, which are mainly produced by memory and/or effector T cells. CONCLUSIONS: These results highlight a critical role of OX40 activation in potentiating the effector function of tumor-reactive CD8+ T cells and suggest further evaluation of OX40 agonist-based combinations in patients with immune-resistant tumors.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Melanoma/drug therapy , PTEN Phosphohydrolase/genetics , Receptors, OX40/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Female , Heterografts , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Receptors, OX40/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...