Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 94(9): 1977-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24279269

ABSTRACT

The relative importance of species richness and identity for the diversity-function relationship remains controversial. We mechanistically explored the potential contribution of ecosystem processes complexity (EPC; i.e., the number of pathways and mechanisms through which an ecosystem process can be directly and/or indirectly affected by species and/or their interactions) to the resolution of this controversy. We hypothesized that the complementarity effects of biodiversity will be stronger and that the diversity-function relationship will be more dependent on species richness as the EPC increases. Using a benthic bioturbator community as a model system we tested these predictions across ecosystem processes that could be ordered according to their complexity (suspended material flux < PO4-P flux < NH4-N flux < bacterioplankton production). Consistent with our predictions, species richness explained an increasing proportion of data variation as EPC increased, whereas the contrary was observed for species composition. Nontransgressive overyielding was not affected by EPC, but the magnitude of transgressive overyielding increased significantly with EPC, indicating that complementarity may be stronger as EPC increases. Our results highlight the importance of considering the interactive role of the characteristics of ecosystem processes in our theoretical understanding of the diversity-function relationship and its underlying mechanisms.


Subject(s)
Biodiversity , Invertebrates/physiology , Adaptation, Physiological , Animals , Species Specificity
2.
PLoS One ; 7(9): e44925, 2012.
Article in English | MEDLINE | ID: mdl-22984586

ABSTRACT

Tests of the biodiversity and ecosystem functioning (BEF) relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate. Here, we investigated whether and how the effects of biodiversity mediated by non-trophic interactions among benthic bioturbator species vary according to community biomass and ecosystem processes. We hypothesized that (1) bioturbator biomass and species richness interact to affect the rates of benthic nutrient regeneration [dissolved inorganic nitrogen (DIN) and total dissolved phosphorus (TDP)] and consequently bacterioplankton production (BP) and that (2) the complementarity effects of diversity will be stronger on BP than on nutrient regeneration because the former represents a more integrative process that can be mediated by multivariate nutrient complementarity. We show that the effects of bioturbator diversity on nutrient regeneration increased BP via multivariate nutrient complementarity. Consistent with our prediction, the complementarity effects were significantly stronger on BP than on DIN and TDP. The effects of the biomass-species richness interaction on complementarity varied among the individual processes, but the aggregated measures of complementarity over all ecosystem processes were significantly higher at the highest community biomass level. Our results suggest that the complementarity effects of biodiversity can be stronger on more integrative ecosystem processes, which integrate subsidiary "simpler" processes, via multivariate complementarity. In addition, reductions in community biomass may decrease the strength of interspecific interactions so that the enhanced effects of biodiversity on ecosystem processes can disappear well before species become extinct.


Subject(s)
Biomass , Chironomidae/physiology , Gastropoda/physiology , Polychaeta/physiology , Animals , Biodiversity , Ecosystem , Geologic Sediments , Invertebrates , Nitrogen/metabolism , Plankton/physiology , Population Dynamics , Water Microbiology
3.
PLoS One ; 6(7): e22205, 2011.
Article in English | MEDLINE | ID: mdl-21789234

ABSTRACT

Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.


Subject(s)
Biomass , Carbon/metabolism , Food Chain , Nitrogen/metabolism , Phosphorus/metabolism , Animals , Autotrophic Processes/radiation effects , Chlorophyll/metabolism , Chlorophyll A , Light , Snails/physiology , Snails/radiation effects , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...