Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Front Oncol ; 13: 1133363, 2023.
Article in English | MEDLINE | ID: mdl-37007070

ABSTRACT

Background: Testicular Germ Cell Tumors (TGCT) are the most common cancer among young adult men. The TGCT histopathology is diverse, and the frequency of genomic alterations, along with their prognostic role, remains largely unexplored. Herein, we evaluate the mutation profile of a 15-driver gene panel and copy number variation of KRAS in a large series of TGCT from a single reference cancer center. Materials and methods: A cohort of 97 patients with TGCT, diagnosed at the Barretos Cancer Hospital, was evaluated. Real-time PCR was used to assess copy number variation (CNV) of the KRAS gene in 51 cases, and the mutation analysis was performed using the TruSight Tumor 15 (Illumina) panel (TST15) in 65 patients. Univariate analysis was used to compare sample categories in relation to mutational frequencies. Survival analysis was conducted by the Kaplan-Meier method and log-rank test. Results: KRAS copy number gain was a very frequent event (80.4%) in TGCT and presented a worse prognosis compared with the group with no KRAS copy gain (10y-OS, 90% vs. 81.5%, p = 0.048). Among the 65 TGCT cases, different variants were identified in 11 of 15 genes of the panel, and the TP53 gene was the most recurrently mutated driver gene (27.7%). Variants were also detected in genes such as KIT, KRAS, PDGFRA, EGFR, BRAF, RET, NRAS, PIK3CA, MET, and ERBB2, with some of them potentially targetable. Conclusion: Although larger studies incorporating collaborative networks may shed the light on the molecular landscape of TGCT, our findings unveal the potential of actionable variants in clinical management for applying targeted therapies.

4.
Biomed Res Int ; 2021: 6650966, 2021.
Article in English | MEDLINE | ID: mdl-33954190

ABSTRACT

New prevention strategies are needed to detect cervical intraepithelial neoplasia (CIN). The microRNA expression analysis has already been reported as molecular biomarkers in the early detection of cervical cancer (CC) through minimally invasive samples, such as liquid biopsy, obtained through collection using liquid-based cytology (LBC). In this study, we aimed to identify molecular signatures of microRNAs in cervical precursor lesions from LBC cervical and the molecular pathways potentially associated with the CC progression. We analyzed 31 LBC cervical samples from women who underwent colposcopy. These samples were divided into two groups: the first group was composed of samples without precursor lesions of CC, considering the control group, referred to as healthy female subjects (HFS; n = 11). The second group corresponded to women diagnosed with cervical interepithelial neoplasia grade 3 (CIN 3; n = 20). We performed microRNA and gene expression profiling using the nCounter® miRNA Expression Assays (NanoString Technology) and PanCancer Pathways (NanoString Technology), respectively. A microRNA target prediction was performed by mirDIP, and molecular pathway interaction was constructed using Cytoscape. Bidirectional in silico analyses and Pearson's correlation were performed for associated the relation between genes, and miRNAs differentially expressed related cervical cancer progression were performed. We found that the expression of nine microRNAs was significantly higher, two were downregulated (miR-381-3p and miR-4531), and seven miRNAs were upregulated (miR-205-5p, miR-130a-3p, miR-3136-3p, miR-128-2-5p, let-7f-5p, miR-202-3p, and miR-323a-5p) in CIN 3 (fold change ≥ 2 and p ≤ 0.05). The miRNA expression patterns were independent of hr-HPV infection. We identified four miRNAs (miR-205-5p, miR-130a-3p, miR-4531, and miR-381-3p) that could be used as biomarkers for CIN 3 in LBC samples through multiple logistic regression analyses. We found 16 genes differentially expressed between CIN 3 and HSF samples (fold change ≥ 2 and p ≤ 0.05). We found the correlation between miR-130a-3p and CCND1(R = -0.52; p = 0.0029), miR-205-5p and EGFR (R = 0.53; p = 0.0021), and miR-4531 and SMAD2 (R = -0.54; p = 0.0016). In addition, we demonstrated the most significant pathways of the targets associated with cervical cancer progression (FDR-corrected p < 0.001). This study demonstrated that miRNA biomarkers may distinguish healthy cervix and CIN 3 and regulate important molecular pathways of carcinogenesis.


Subject(s)
Biomarkers, Tumor/genetics , Cervix Uteri/pathology , MicroRNAs/genetics , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Adult , Aged , Area Under Curve , Biomarkers, Tumor/metabolism , Computer Simulation , Down-Regulation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Liquid Biopsy , Logistic Models , MicroRNAs/metabolism , Middle Aged , Neoplasm Grading , Papillomavirus Infections/complications , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , Up-Regulation/genetics , Uterine Cervical Neoplasms/virology , Young Adult , Uterine Cervical Dysplasia/virology
5.
Thorac Cancer ; 11(10): 2987-2992, 2020 10.
Article in English | MEDLINE | ID: mdl-32881389

ABSTRACT

Epidermal growth factor (EGF) and its receptor (EGFR) play a paramount role in lung carcinogenesis. The polymorphism in the EGF promoter region EGF+61A>G (rs4444903) has been associated with cancer susceptibility, but its role in lung cancer patients treated with tyrosine kinase inhibitors (TKIs) remains unknown. Here, we aimed to evaluate the predictive and prognostic role of EGF+61A>G SNP in lung cancer from Brazilian EGFR-mutated TKI-treated patients. Herein, patients carrying EGFR-sensitizing mutations submitted to TKI treatment (gefitinib/erlotinib) were analyzed (n = 111) for EGF+61A>G genotype by TaqMan genotyping assay. TKI treatment was classified as partial response (PR), stable disease (SD), and disease progression (DP), according to RECIST1.1. Association analysis was assessed by chi-square and Fisher's test (univariate) and multinomial model (multivariate) and survival analysis by Kaplan-Meier method and log-rank test. The EGF+61A>G genotype frequencies observed were: AA = 31.5% (n = 35), AG = 49.6% (n = 55) and GG = 18.9% (n = 21). The allelic frequencies were 56.3% for A, and 43.7% for G and the population was in Hardy-Weinberg equilibrium (P = 0.94). EGF+61A>G codominant model (AA vs. AG vs. GG) was associated with a response to TKIs (P = 0.046), as well as a recessive model (AA vs. AG + GG; P = 0.023). The multinomial regression showed an association between the codominant model (AG) and recessive model (AG + GG) with SD compared with DP (P = 0.01;OR = 0.08; 95% CI = 0.01-0.60 and P = 0.02;OR = 0.12; 95% CI = 0.20-0.72, respectively). No association between genotypes and progression-free or overall survival was observed. In conclusion, the EGF+61 polymorphism (AG and AG + GG) was independently associated with stable disease in lung cancer patients although it was not associated with the overall response rate to first-generation TKIs or patient outcome.


Subject(s)
Epidermal Growth Factor/genetics , Genetic Predisposition to Disease/genetics , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Humans , Lung Neoplasms/pathology , Middle Aged , Protein Kinase Inhibitors/pharmacology , Retrospective Studies
6.
J Mol Diagn ; 22(7): 957-966, 2020 07.
Article in English | MEDLINE | ID: mdl-32380172

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is currently classified in four main molecular subgroups with different clinical outcomes: sonic hedgehog, wingless, group 3, and group 4 (MBSHH, MBWNT, MBGRP3, or MBGRP4). Presently, a 22-gene expression panel has been efficiently applied for molecular subgrouping using nCounter technology. In this study, formalin-fixed, paraffin-embedded samples from 164 Brazilian medulloblastomas were evaluated, applying the 22-gene panel, and subclassified into the low and high expression of nine key medulloblastoma-related genes. In addition, TP53 mutation status was assessed using TruSight Tumor 15 Panel, and its correlation with expression and prognostic impact was evaluated. Samples from 149 of 164 patients (90%) were classified into MBSHH (47.7%), MBWNT (16.1%), MBGRP3 (15.4%), and MBGRP4 (20.8%). GNAS presented the highest expression levels, with higher expression in MBSHH. TP53, MYCN, SOX2, and MET were also up-regulated in MBSHH, whereas PTEN was up-regulated in MBGRP4. GNAS, TP53, and PTEN low expression was associated with the unfavorable patient outcome only for MBSHH (P = 0.04, P = 0.01, and P = 0.02, respectively). TP53 mutations were detected in 28.57% of MBSHH cases and exhibited association with lower expression and worse clinical outcome, although not statistically significant. The 22-gene panel for molecular classification of medulloblastoma associated with the expression of GNAS, TP53, and PTEN improves the patient prognostication in MBSHH subgroup and can be easily incorporated in the 22-gene panel without any additional costs.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Hedgehog Proteins/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , PTEN Phosphohydrolase/genetics , Transcriptome , Tumor Suppressor Protein p53/genetics , Adolescent , Brazil/epidemiology , Cerebellar Neoplasms/epidemiology , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis/methods , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Medulloblastoma/epidemiology , Mutation , Prognosis , Young Adult
7.
J Oncol ; 2019: 8393769, 2019.
Article in English | MEDLINE | ID: mdl-31485228

ABSTRACT

Early detection is crucial for achieving a reduction in breast cancer mortality. Analysis of circulating cell-free microRNAs present in the serum of cancer patients has emerged as a promising new noninvasive biomarker for early detection of tumors and for predicting their molecular classifications. The rationale for this study was to identify subtype-specific molecular profiles of cell-free microRNAs for early detection of breast cancer in serum. Fifty-four early-stage breast cancers with 27 age-matched controls were selected for circulating microRNAs evaluation in the serum. The 54 cases were molecularly classified (luminal A, luminal B, luminal B Her2 positive, Her-2, triple negative). NanoString platform was used for digital detection and quantitation of 800 tagged microRNA probes and comparing the overall differences in serum microRNA expression from breast cancer cases with controls. We identified the 42 most significant (P ≤ 0.05, 1.5-fold) differentially expressed circulating microRNAs in each molecular subtype for further study. Of these microRNAs, 19 were significantly differentially expressed in patients presenting with luminal A, eight in the luminal B, ten in luminal B HER 2 positive, and four in the HER2 enriched subtype. AUC is high with suitable sensitivity and specificity. For the triple negative subtype miR-25-3p had the best accuracy. Predictive analysis of the mRNA targets suggests they encode proteins involved in molecular pathways such as cell adhesion, migration, and proliferation. This study identified subtype-specific molecular profiles of cell-free microRNAs suitable for early detection of breast cancer selected by comparison to the microRNA profile in serum for female controls without apparent risk of breast cancer. This molecular profile should be validated using larger cohort studies to confirm the potential of these miRNA for future use as early detection biomarkers that could avoid unnecessary biopsy in patients with a suspicion of breast cancer.

8.
Neuropathology ; 38(5): 475-483, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30155928

ABSTRACT

Medulloblastoma is the most frequent malignant brain tumor in children. Four medulloblastoma molecular subgroups, MBSHH , MBWNT , MBGRP3 and MBGRP4 , have been identified by integrated high-throughput platforms. Recently, a 22-gene panel NanoString-based assay was developed for medulloblastoma molecular subgrouping, but the robustness of this assay has not been widely evaluated. Mutations in the gene for human telomerase reverse transcriptase (hTERT) have been found in medulloblastomas and are associated with distinct molecular subtypes. This study aimed to implement the 22-gene panel in a Brazilian context, and to associate the molecular profile with patients' clinical-pathological features. Formalin-fixed, paraffin-embedded (FFPE) medulloblastoma samples (n = 104) from three Brazilian centers were evaluated. Expression profiling of the 22-gene panel was performed by NanoString and a Canadian series (n = 240) was applied for training phase. hTERT mutations were analyzed by PCR followed by direct Sanger sequencing and the molecular profile was associated with patients' clinicopathological features. Overall, 65% of the patients were male, average age at diagnosis was 18 years and 7% of the patients presented metastasis at diagnosis. The molecular classification was attained in 100% of the cases, with the following frequencies: MBSHH (n = 51), MBWNT (n = 19), MBGRP4 (n = 19) and MBGRP3 (n = 15). The MBSHH and MBGRP3 subgroups were associated with older and younger patients, respectively. The MBGRP4 subgroup exhibited the lowest 5-year cancer-specific overall survival (OS), yet in the multivariate analysis, only metastasis at diagnosis and surgical resection were associated with OS. hTERT mutations were detected in 29% of the cases and were associated with older patients, increased hTERT expression and MBSHH subgroup. The 22-gene panel provides a reproducible assay for molecular subgrouping of medulloblastoma FFPE samples in a routine setting and is well-suited for future clinical trials.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Gene Expression Profiling/methods , Medulloblastoma/genetics , Medulloblastoma/pathology , Adolescent , Adult , Cerebellar Neoplasms/mortality , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Medulloblastoma/mortality , Middle Aged , Prognosis , Reproducibility of Results , Transcriptome , Young Adult
9.
Oncotarget ; 7(51): 84634-84644, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27705928

ABSTRACT

BACKGROUND: Overexpression of the oncogene yes-associated-protein-1 (YAP1) is associated with increased cell proliferation in human cancers. YAP1 is a potential target of the Wnt/beta-catenin pathway, which plays an important role in adrenocortical tumors (ACT). The role of YAP1 in adrenocortical tumorigenesis has not been assessed. AIMS: To evaluate YAP1 expression in normal adrenals and pediatric ACT and its association with disease outcome. To investigate the interaction between YAP1 and the Wnt/beta-catenin pathway in adrenocortical cells. RESULTS: Strong YAP1 staining was present in fetal adrenals and pediatric ACT but weak in postnatal adrenals. In pediatric ACT, YAP1 mRNA overexpression was associated with death, recurrent/metastatic disease and lower overall survival. The inhibition of the Wnt/beta-catenin pathway increased YAP1 mRNA expression. siYAP1 increased CTNNB1/beta-catenin expression and nuclear staining regardless of DLV2, moreover, it decreased cell growth and impaired cell migration. MATERIALS AND METHODS: We assessed in 42 pediatric ACT samples the YAP1 protein expression by immunohistochemistry and mRNA expression by RT-qPCR and analyzed their association with outcome. As controls, we resort 32 fetal and postnatal normal adrenals for IHC and 10 normal adrenal cortices for RT-qPCR. The interaction between YAP1 and the Wnt/beta-catenin pathway was assessed in NCI-H295 adrenocortical cells by inhibiting the TCF/beta-catenin complex and by knocking down YAP1. CONCLUSION: YAP1 overexpression is a marker of poor prognosis for pediatric patients with ACT. In adrenocortical cells, there is a close crosstalk between YAP1 and Wnt/beta-catenin. These data open the possibility of future molecular therapies targeting Hippo/YAP1 signaling to treat advanced ACT.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adrenal Cortex Neoplasms/metabolism , Adrenal Cortex/metabolism , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/mortality , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Child , Child, Preschool , Female , Gene Expression Regulation, Neoplastic , Humans , Infant , Male , Neoplasm Metastasis , Neoplasm Recurrence, Local , Phosphoproteins/genetics , Signal Transduction , Survival Analysis , Transcription Factors , Wnt Proteins/metabolism , YAP-Signaling Proteins , beta Catenin/metabolism
10.
J Mol Endocrinol ; 57(2): 97-111, 2016 08.
Article in English | MEDLINE | ID: mdl-27282544

ABSTRACT

We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. In this work, GPR101 transcripts were characterized in human tissues by 5'-Rapid Amplification of cDNA Ends (RACE) and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-quantitative PCR (qPCR), whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat and zebrafish. We identified four GPR101 isoforms characterized by different 5'-untranslated regions (UTRs) and a common 6.1kb long 3'UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult monkey and rat pituitaries expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary, Gpr101 is expressed only after birth and shows sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species.


Subject(s)
Gene Expression Regulation , RNA, Messenger/genetics , Receptors, G-Protein-Coupled/genetics , Adult , Animals , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Macaca mulatta , Male , Organ Specificity/genetics , Pituitary Gland/metabolism , Promoter Regions, Genetic , RNA, Messenger/chemistry , Rats , Untranslated Regions , Zebrafish
12.
Oncotarget ; 6(40): 43016-32, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26515592

ABSTRACT

BACKGROUND: To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. AIM: To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. METHODS: Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5-200 µM) for 24-96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). RESULTS: In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. CONCLUSIONS: Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC.


Subject(s)
Adrenal Cortex Neoplasms/pathology , Antineoplastic Agents/pharmacology , T Cell Transcription Factor 1/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Radioimmunoassay , Real-Time Polymerase Chain Reaction , Wnt Signaling Pathway/drug effects
13.
Endocr Relat Cancer ; 22(4): 519-30, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979379

ABSTRACT

We hypothesized that mutations that inactivate phosphodiesterase (PDE) activity and lead to increased cAMP and cyclic guanosine monophosphate levels may be associated with prostate cancer (PCa). We sequenced the entire PDE coding sequences in the DNA of 16 biopsy samples from PCa patients. Novel mutations were confirmed in the somatic or germline state by Sanger sequencing. Data were then compared to the 1000 Genome Project. PDE, CREB and pCREB protein expression was also studied in all samples, in both normal and abnormal tissue, by immunofluorescence. We identified three previously described PDE sequence variants that were significantly more frequent in PCa. Four novel sequence variations, one each in the PDE4B,PDE6C, PDE7B and PDE10A genes, respectively, were also found in the PCa samples. Interestingly, PDE10A and PDE4B novel variants that were present in 19 and 6% of the patients were found in the tumor tissue only. In patients carrying PDE defects, there was pCREB accumulation (P<0.001), and an increase of the pCREB:CREB ratio (patients 0.97±0.03; controls 0.52±0.03; P-value <0.001) by immunohistochemical analysis. We conclude that PDE sequence variants may play a role in the predisposition and/or progression to PCa at the germline and/or somatic state respectively.


Subject(s)
Phosphoric Diester Hydrolases/genetics , Prostatic Neoplasms/genetics , Base Sequence , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Exome , Genetic Variation , Humans , Male , Phosphorylation , Prostatic Neoplasms/metabolism , Sequence Analysis, DNA , Up-Regulation
14.
N Engl J Med ; 371(25): 2363-74, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25470569

ABSTRACT

BACKGROUND: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. CONCLUSIONS: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).


Subject(s)
Acromegaly/genetics , Chromosome Duplication , Chromosomes, Human, X , Gigantism/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Female , Human Growth Hormone/metabolism , Humans , Infant , Male , Phenotype , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
15.
J Clin Endocrinol Metab ; 99(7): E1209-16, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24712566

ABSTRACT

BACKGROUND: The sonic hedgehog (SHH) pathway plays a key role in rodent adrenal cortex development and is involved in tumorigenesis in several human tissues, but data in human adrenal glands are limited. OBJECTIVES: The objectives of the study were to analyze the involvement of the SHH pathway in human adrenal development and tumorigenesis and the effects of SHH inhibition on an adrenocortical tumor (ACT) cell line. PATIENTS AND METHODS: Expression of SHH pathway components was evaluated by immunohistochemistry in 51 normal adrenals (33 fetal) and 34 ACTs (23 pediatric) and by quantitative PCR in 81 ACTs (61 pediatric) and 19 controls (10 pediatric). The effects of SHH pathway inhibition on gene expression and cell viability in the NCI-H295A adrenocortical tumor cell line after cyclopamine treatment were analyzed. RESULTS: SHH pathway proteins were present in fetal and postnatal normal adrenals and showed distinct patterns of spatiotemporal expression throughout development. Adult adrenocortical carcinomas presented with higher expression of PTCH1, SMO, GLI3, and SUFU compared with normal adult adrenal cortices. Conversely, pediatric ACTs showed lower mRNA expression of SHH, PTCH1, SMO, GLI1, and GLI3 compared with normal pediatric adrenal cortices. In vitro treatment with cyclopamine resulted in decreased GLI3, SFRP1, and CTNNB1 mRNA expression and ß-catenin staining as well as decreased cell viability. CONCLUSIONS: The SHH pathway is active in human fetal and postnatal adrenals, up-regulated in adult adrenocortical carcinomas, and down-regulated in pediatric ACTs. SHH pathway antagonism impaired cell viability. The SHH pathway is deregulated in ACTs and might provide a new target therapy to be explored.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenal Cortex/embryology , Adrenal Cortex/growth & development , Adrenocortical Carcinoma/genetics , Hedgehog Proteins/genetics , Adrenal Cortex/metabolism , Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Adult , Case-Control Studies , Cells, Cultured , Child , Embryonic Development/genetics , Female , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Humans , Infant, Newborn , Pregnancy , Retrospective Studies , Signal Transduction/genetics
16.
Clin Endocrinol (Oxf) ; 81(4): 503-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24717047

ABSTRACT

CONTEXT: The role of planar cell polarity (Wnt/PCP) and calcium-dependent (Wnt/Ca) noncanonical Wnt pathways in adrenocortical tumours (ACTs) is unknown. OBJECTIVES: To investigate the gene expression of Wnt/PCP and Wnt/Ca pathways and its association with TP53 p.R337H and CTNNB1 mutations in paediatric and adult ACTs and to correlate these findings with clinical outcome. PATIENTS: Expression of noncanonical Wnt-related genes was evaluated in 91 ACTs (66 children and 25 adults) by qPCR and the expression of beta-catenin, P53 and protein effectors of Wnt/Ca (NFAT) and Wnt/PCP (JNK) by immunohistochemistry. TP53 and CTNNB1 genes were sequenced. RESULTS: TP53 p.R337H mutation frequency was higher in children (86% vs 28%), while CTNNB1 mutation was higher in adults (32% vs 6%). Mortality was higher in adults harbouring TP53 p.R337H and in children with CTNNB1 mutations. Overexpression of WNT5A, Wnt/Ca ligand, was observed in children and adults. Overexpression of MAPK8 and underexpression of PRICKLE, Wnt/PCP mediators, were observed in paediatric but not in adult cases. Cytoplasmic/nuclear beta-catenin and P53 accumulation was observed in the majority of paediatric and adult ACTs as well as NFAT and JNK. Overexpression of MAPK8 and underexpression of PRICKLE were associated with mortality in children, while overexpression of WNT5A and underexpression of PRICKLE were associated with mortality in adults. CONCLUSIONS: In our study, TP53 p.R337H and CTNNB1 mutations correlated with poor prognosis in adults and children, respectively. We demonstrate, for the first time, the activation of Wnt/PCP and Wnt/Ca noncanonical pathway genes, and their association with poor outcome in children and adults, suggesting their putative involvement in ACTs aggressiveness.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Wnt Signaling Pathway/physiology , Adolescent , Adrenal Cortex Neoplasms/genetics , Adult , Aged , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Infant , Male , Middle Aged , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway/genetics , Young Adult , beta Catenin/genetics , beta Catenin/metabolism
17.
Expert Rev Endocrinol Metab ; 9(5): 445-464, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30736208

ABSTRACT

Adrenocortical tumors (ACTs) may be sporadic or related to inherited genetic syndromes. Uncovering the molecular defects underlying these genetic syndromes has revealed key signaling pathways involved in adrenocortical tumorigenesis. Although the understanding of ACT biology has improved, to date, very few potential prognostic molecular markers of childhood ACTs have been identified. In this review, we summarize the current knowledge of the epidemiology, clinical presentation, diagnosis, prognosis and treatment options for pediatric patients with ACTs. A review of the genetic basis of adrenocortical tumorigenesis is presented, focusing on the main molecular abnormalities involved in the tumorigenic process and potential novel therapy targets that have been generated, or are being generated, with the discovery of these molecular defects.

18.
J Clin Endocrinol Metab ; 96(10): 3106-14, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21849527

ABSTRACT

CONTEXT: CTNNB1/ß-catenin mutations and activation of Wnt/ß-catenin pathway are frequent in adult adrenocortical tumors (ACT), but data on childhood ACT are lacking. OBJECTIVE: The aim of the study was to investigate the presence of Wnt/ß-catenin pathway abnormalities in childhood ACT. PATIENTS AND METHODS: Clinicopathological findings and outcome of 62 childhood ACT patients were analyzed regarding CTNNB1 mutations and the expression of Wnt-related genes (CTNNB1; WNT4, a Wnt ligand; SFRP1, DKK3, and AXIN1, Wnt inhibitors; TCF7, a transcription factor; and MYC and WISP2, target genes) by quantitative PCR and immunohistochemistry. RESULTS: CTNNB1-activating mutations were found in only four of 62 ACT (6%), all of them harboring TP53 mutation. There was association between the presence of CTNNB1 mutations and death (P = 0.02). Diffuse ß-catenin accumulation was found in 71% of ACT, even in ACT without CTNNB1 mutations. Compared to normal adrenals, ACT presented increased expression of CTNNB1 (P = 0.008) and underexpression of Wnt inhibitor genes: DKK3 (P < 0.0001), SFRP1 (P = 0.05), and AXIN1 (P = 0.04). With regard to Wnt/ß-catenin target genes, ACT presented increased expression of WISP2 but lower expression of MYC. Higher overall survival was associated with underexpression of SFRP1 (P = 0.01), WNT4 (P = 0.004), and TCF7 (P < 0.01). CONCLUSIONS: CTNNB1 mutations are not common in childhood ACT but appear to associate with poor prognosis. Nevertheless, most ACT exhibit increased expression of ß-catenin and WISP2 and reduced expression of Wnt inhibitor genes (DKK3, SFRP1, and AXIN1). Thus, in addition to CTNNB1 mutations, other genetic events affecting the Wnt/ß-catenin pathway may be involved in childhood adrenocortical tumorigenesis.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Signal Transduction/physiology , Wnt Proteins/physiology , beta Catenin/physiology , Adolescent , Adrenal Cortex Neoplasms/genetics , Axin Protein/physiology , CCN Intercellular Signaling Proteins , Child , Child, Preschool , Cohort Studies , DNA/genetics , DNA/isolation & purification , Female , Humans , Immunohistochemistry , Infant , Intercellular Signaling Peptides and Proteins/physiology , Male , Mutation/physiology , Proto-Oncogene Proteins c-myc/physiology , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , Repressor Proteins , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Survival Analysis , T Cell Transcription Factor 1/physiology , Transcription Factors/physiology , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/genetics , Wnt4 Protein/physiology , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...