Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
2.
Mol Neurobiol ; 61(11): 9402-9415, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38639862

ABSTRACT

Fibromyalgia (FM) is a painful chronic condition that significantly impacts the quality of life, posing challenges for clinical management. Given the difficulty of understanding the pathophysiology and finding new therapeutics, this study explored the effects of a medicinal plant, E. brasiliensis, in an FM model induced by reserpine in Swiss mice. Animals were treated with saline 0.9% (vehicle), duloxetine 10 mg/kg (positive control), or hydroalcoholic extract of E. brasiliensis leaves 300 mg/kg (HEEb). Nociceptive parameters, as well as locomotion, motor coordination, strength, anxiety, and depressive-like behaviors, were evaluated for 10 days. After that, the brain and blood were collected for further analysis of cytokines (interleukin 1? and interleukin 6), brain-derived neurotrophic factor (BDNF), and the immunocontents of total and phosphorylated Tropomyosin receptor kinase B (TrkB). The results demonstrated that the acute and prolonged treatment with HEEb was able to reduce both mechanical and thermal nociception. It was also possible to observe an increase in the strength, without changing locomotion and motor coordination parameters. Interestingly, treatment with HEEb reduces anxious and depressive-like behaviors. Finally, we observed a reduction in inflammatory cytokines in the hippocampus of animals treated with HEEb, while an increase in BDNF was observed in the prefrontal cortex (PFC). However, no alterations related to total and phosphorylated TrkB receptor expression were found. Our study demonstrated the antinociceptive and emotional effects of HEEb in mice, possibly acting on neuroinflammatory and neurotrophic mechanisms. These data provide initial evidence about the E. brasiliensis potential for treating chronic pain.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Fibromyalgia , Plant Extracts , Plant Leaves , Reserpine , Animals , Analgesics/pharmacology , Analgesics/therapeutic use , Mice , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Fibromyalgia/drug therapy , Fibromyalgia/chemically induced , Brain-Derived Neurotrophic Factor/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Receptor, trkB/metabolism , Emotions/drug effects , Cytokines/metabolism , Depression/drug therapy , Depression/chemically induced , Anxiety/drug therapy , Anxiety/chemically induced , Behavior, Animal/drug effects
3.
Behav Brain Res ; 461: 114835, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38151185

ABSTRACT

Two inbred strains, Lewis (LEW) and Spontaneously Hypertensive Rats (SHR), are well-known for their contrasting behavior related to anxiety/emotionality. Studies with these two strains led to the discovery of the Quantitative Trait Loci (QTL) on chromosome 4 (Anxrr16). To better understand the influences of this genomic region, the congenic rat strain SLA16 (SHR.LEW-Anxrr16) was developed. SLA16 rats present higher hyperactivity/impulsivity, deficits in learning and memory, and lower basal blood pressure than the SHR strain, even though genetic differences between them are only in chromosome 4. Thus, the present study proposed the alpha-synuclein and the dopaminergic system as candidates to explain the differential behavior of SHR and SLA16 strains. To accomplish this, beyond the behavioral analysis, we performed (I) the Snca gene expression and (II) quantification of the alpha-synuclein protein in the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) of SHR and SLA16 strains; (III) sequencing of the 3'UTR of the Snca gene; and (IV) evaluation of miRNA binding in the 3'UTR site. A Single Nucleotide Polymorphism (SNP) was identified in the 3'UTR of the Snca gene, which exhibited upregulation in the HPC of SHR compared to SLA16 females. Alpha-synuclein protein was higher in the HPC of SHR males compared to SLA16 males. The results of this work suggested that differences in alpha-synuclein HPC content could be influenced by miRNA regulation and associated with behavioral differences between SHR and SLA16 animals.


Subject(s)
MicroRNAs , alpha-Synuclein , Animals , Female , Male , Rats , 3' Untranslated Regions , alpha-Synuclein/genetics , Hippocampus , Rats, Inbred Lew , Rats, Inbred SHR
4.
Children (Basel) ; 10(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38136033

ABSTRACT

The municipality of Salvador, situated in Brazil, distinguished itself as the epicenter of the emergence of microcephaly related to congenital manifestations of Zika syndrome. Despite the anticipated significant developmental setbacks in these children, research has indicated a varied range of outcomes, with certain instances even reflecting minimal developmental delay. Our objective was to pinpoint determinants that could forecast developmental anomalies in children diagnosed with microcephaly associated with congenital Zika syndrome (CZS). METHODOLOGY: A forward-looking clinical and neurodevelopmental examination was conducted focusing on neonates diagnosed with microcephaly with CZS, birthed between September 2015 and April 2016 at the Hospital Geral Roberto Santos, in Salvador city. That infants were monitored up to their third year by a multiprofessional team. Child development was assessed using the composite Bayley III score. Undertaken by two blinded experts, cranial CT scan analysis was performed during the neonate period for the detection of brain abnormalities and to quantify ventricle enlargement, measured by Evans' index (EI). RESULTS: Fifty newborns were evaluated with a median head circumference of 28 cm (interquartile range 27-31 cm). EI was associated with neurodevelopmental delay at three years and remained significant after adjustment for head circumference. A 0.1-point increase in EI was associated with a delay of 3.2 months in the receptive language (p = 0.016), 3.4 months in the expressive language (p = 0.016), 3.4 months in the cognitive (p = 0.016), 2.37 months in the gross motor (p = 0.026), and 3.1 months in the fine motor (p = 0.021) domains. CONCLUSIONS: EI predicted neurodevelopmental delay in all Bayley domains in children with microcephaly associated with CZS.

5.
Front Endocrinol (Lausanne) ; 14: 1183151, 2023.
Article in English | MEDLINE | ID: mdl-37576961

ABSTRACT

Introduction: Intracellular communication is essential for the maintenance of the anterior pituitary gland plasticity. The aim of this study was to evaluate whether GPCR-Gαi modulates basic fibroblast growth factor (FGF2)-induced proliferative activity in normal pituitary cell populations. Methods: Anterior pituitary primary cell cultures from Wistar female rats were treated with FGF2 (10ng/mL) or somatostatin analog (SSTa, 100nM) alone or co-incubated with or without the inhibitors of GPCR-Gαi, pertussis toxin (PTX, 500nM), MEK inhibitor (U0126, 100µM) or PI3K inhibitor (LY 294002, 10 µM). Results: FGF2 increased and SSTa decreased the lactotroph and somatotroph BrdU uptak2e (p<0.05) whereas the FGF2-induced S-phase entry was prevented by SSTa co-incubation in both cell types, with these effects being reverted by PTX, U0126 or LY294002 pre-incubation. The inhibition of lactotroph and somatotroph mitosis was associated with a downregulation of c-Jun expression, a decrease of phosphorylated (p) ERK and pAKT. Furthermore, SSTa was observed to inhibit the S-phase entry induced by FGF2, resulting in a further increase in the number of cells in the G1 phase and a concomitant reduction in the number of cells in the S phases (p< 0.05), effects related to a decrease of cyclin D1 expression and an increase in the expression of the cell cycle inhibitors p27 and p21. Discussion: In summary, the GPCR-Gαi activated by SSTa blocked the pro-proliferative effect of FGF2 in normal pituitary cells via a MEK-dependent mechanism, which acts as a mediator of both anti and pro-mitogenic signals, that may regulate the principal effectors of the G1 to S-phase transition.


Subject(s)
Fibroblast Growth Factor 2 , Pituitary Gland , Animals , Female , Rats , Cell Proliferation , Fibroblast Growth Factor 2/pharmacology , Mitogen-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases/metabolism , Rats, Wistar , Pituitary Gland/cytology , Pituitary Gland/drug effects
6.
Ambio ; 52(10): 1603-1617, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37261644

ABSTRACT

Although protected areas (PAs) are designed to safeguard natural ecosystems from anthropic modifications, many PAs worldwide are subjected to numerous human-induced impacts. We evaluated whether the establishment of PAs in the Upper Paraná River floodplain region could reduce anthropic landscape changes and whether there is a difference in protection when using different PA restriction categories. We analyzed the overall landscape dynamics using 30 years of land-use time series data and evaluated the change intensity via a partial land-use intensity analysis. Despite the increasing landscape anthropization, the PAs seemed to relieve the general change process, protecting natural areas mainly from agricultural expansion. Concerning the degree of use restriction, more restricted protection led to less human-induced changes. Finally, accessing PA effectiveness is a multidisciplinary challenge for researchers; however, this knowledge is crucial to avoid misunderstandings or poorly crafted public policies or decisions that may harm the environment.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Biodiversity , Agriculture , Brazil
7.
Glycoconj J ; 40(1): 47-67, 2023 02.
Article in English | MEDLINE | ID: mdl-36522582

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.


Subject(s)
Antineoplastic Agents , Autophagic Cell Death , Dioclea , Glioma , Humans , Dioclea/chemistry , Caspase 8/metabolism , Caspase 8/pharmacology , Caspase 8/therapeutic use , Lectins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Proto-Oncogene Proteins c-akt/therapeutic use , Cell Line, Tumor , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Cell Movement , Autophagy , Antineoplastic Agents/pharmacology , Cell Proliferation , Apoptosis
8.
Acta sci., Biol. sci ; 45: e64188, 2023. ilus
Article in English | VETINDEX | ID: biblio-1436974

ABSTRACT

The sartorius muscle is located in the pelvic limb of the dog and is divided into a cranial and caudal part. There is no report describingof the three parts of the sartorius muscle. The aim of the present report was to describe the presence of a third part of the sartorius muscle in a dog. Although it does not represent a malformation, it is an important anatomical variation to consider fordidactic purposes of dissection and in surgeries of the pelvic limb, as in this case there is a need to move the muscles apart to maintain their integrity.Furthermore, this anatomical description is relevant for comparative purposes in this animal species.(AU)


Subject(s)
Animals , Dogs/anatomy & histology , Anatomic Variation , Hamstring Muscles/anatomy & histology
9.
Front Cell Neurosci ; 16: 943506, 2022.
Article in English | MEDLINE | ID: mdl-36212694

ABSTRACT

Functional recovery after peripheral nerve injuries is critically dependent on axonal regeneration. Several autonomous and non-cell autonomous processes regulate axonal regeneration, including the activation of a growth-associated transcriptional program in neurons and the reprogramming of differentiated Schwann cells (dSCs) into repair SCs (rSCs), triggering the secretion of neurotrophic factors and the activation of an inflammatory response. Repair Schwann cells also release pro-regenerative extracellular vesicles (EVs), but is still unknown whether EV secretion is regulated non-cell autonomously by the regenerating neuron. Interestingly, it has been described that nerve activity enhances axonal regeneration by increasing the secretion of neurotrophic factors by rSC, but whether this activity modulates pro-regenerative EV secretion by rSC has not yet been explored. Here, we demonstrate that neuronal activity enhances the release of rSC-derived EVs and their transfer to neurons. This effect is mediated by activation of P2Y receptors in SCs after activity-dependent ATP release from sensory neurons. Importantly, activation of P2Y in rSCs also increases the amount of miRNA-21 present in rSC-EVs. Taken together, our results demonstrate that neuron to glia communication by ATP-P2Y signaling regulates the content of SC-derived EVs and their transfer to axons, modulating axonal elongation in a non-cell autonomous manner.

10.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296679

ABSTRACT

A glioblastoma (GBM) is a highly malignant primary brain tumor with a poor prognosis because of its invasiveness and high resistance to current therapies. In GBMs, abnormal glycosylation patterns are associated with malignancy, which allows for the use of lectins as tools for recognition and therapy. More specifically, lectins can interact with glycan structures found on the malignant cell surface. In this context, the present work aimed to investigate the antiglioma potential of ConGF, a lectin purified from Canavalia grandiflora seeds, against C6 cells. The treatment of C6 cells with ConGF impaired the mitochondrial transmembrane potential, reduced cell viability, and induced morphological changes. ConGF also induced massive autophagy, as evaluated by acridine orange (AO) staining and LC3AB-II expression, but without prominent propidium iodide (PI) labeling. The mechanism of action appears to involve the carbohydrate-binding capacity of ConGF, and in silico studies suggested that the lectin can interact with the glycan structures of matrix metalloproteinase 1 (MMP1), a prominent protein found in malignant cells, likely explaining the observed effects.


Subject(s)
Canavalia , Fabaceae , Canavalia/chemistry , Fabaceae/chemistry , Lectins/chemistry , Matrix Metalloproteinase 1 , Propidium , Acridine Orange , Plant Lectins/chemistry , Seeds/chemistry , Carbohydrates/analysis
11.
Futures ; 142: 102996, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35855683

ABSTRACT

At the beginning of 2020, feelings of fear and uncertainty spread throughout the world after the novel coronavirus rapid propagation. The world was not ready to face such a situation. Countries implemented emergency measures to contain it, which included social distancing and shutting down the economy. Social and economic impacts were unpredictable. This manuscript aims to present the application of a remote scenario planning method that identifies threats, opportunities, and subsidies to a strategic evaluation in a short term. The main results identified 15 key trends, four critical uncertainties, four scenarios, ten opportunities, and 13 threats. They were debated and presented to some Brazilian organizations' decision-makers to help develop strategies to curb the aftermath of COVID-19. Our findings show that it is possible to use this agile method to build consistent and coherent scenarios that support the decision-making process. Part of the experts said that participating in the process was essential to comprehend it better. The process also contributed to their learning process and their organization on anticipatory strategy thinking concerning possible future. They agree that the scenarios were relevant, defiant, and plausible and incorporated meaningful events and real challenges to their organizations' strategy formulation or decision-making.

12.
Neurotox Res ; 40(1): 127-139, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35043379

ABSTRACT

Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant whose mechanisms of action involve oxidation of endogenous nucleophilic groups (mainly thiols and selenols), depletion of antioxidant defenses, and disruption of neurotransmitter homeostasis. Diphenyl diselenide-(PhSe)2-a model diaryl diselenide, has been reported to display significant protective effects against MeHg-induced neurotoxicity under both in vitro and in vivo experimental conditions. In this study, we compared the protective effects of (PhSe)2 with those of RC513 (4,4'-diselanediylbis(2,6-di-tert-butylphenol), a novel diselenide-probucol-analog) against MeHg-induced toxicity in the neuronal (hippocampal) cell line HT22. Although both (PhSe)2 and RC513 significantly mitigated MeHg- and tert-butylhydroperoxide (t-BuOOH)-cytotoxicity, the probucol analog exhibited superior protective effects, which were observed earlier and at lower concentrations compared to (PhSe)2. RC513 treatment (at either 0.5 µM or 2 µM) significantly increased glutathione peroxidase (GPx) activity, which has been reported to counteract MeHg-toxicity. (PhSe)2 was also able to increase GPx activity, but only at 2 µM. Although both compounds increased the Gpx1 transcripts at 6 h after treatments, only RC513 was able to increase mRNA levels of Prx2, Prx3, Prx5, and Txn2, which are also involved in peroxide detoxification. RC513 (at 2 µM) significantly increased GPx-1 protein expression in HT22 cells, although (PhSe)2 displayed a minor (nonsignificant) effect in this parameter. In agreement, RC513 induced a faster and superior capability to cope with exogenously-added peroxide (t-BuOOH). In summary, when compared to the prototypical organic diaryl diselenide [(PhSe)2], RC513 displayed superior protective properties against MeHg-toxicity in vitro; this was paralleled by a more pronounced upregulation of defenses related to detoxification of peroxides, which are well-known MeHg-derived intermediate oxidant species.


Subject(s)
Methylmercury Compounds , Organoselenium Compounds , Benzene Derivatives/pharmacology , Methylmercury Compounds/toxicity , Organoselenium Compounds/pharmacology , Peroxides , Probucol/pharmacology
13.
Behav Brain Res ; 414: 113512, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34358572

ABSTRACT

Folic acid has been reported to exert antidepressant effects, but its ability to abrogate the depressive-like behavior and signaling pathways alterations elicited by an inflammatory model of depression remains to be established. This study examined: a) the efficacy of folic acid in a mouse model of depression induced by tumor necrosis factor (TNF-α); b) whether the administration of subthreshold doses of folic acid and antidepressants (fluoxetine, imipramine, and bupropion), MK-801, or 7-nitroindazole cause antidepressant-like effects; c) the effects of TNF-α and/or folic acid on hippocampal p38MAPK, Akt, ERK, and JNK phosphorylation. Folic acid reduced the immobility time in the tail suspension test (TST) in control mice (10-50 mg/kg, p.o) and abolished the depressive-like behavior elicited by TNF-α (0.001 fg/site, i.c.v.) in this test (1-50 mg/kg, p.o). Coadministration of subthreshold doses of folic acid (1 mg/kg, p.o.) and fluoxetine, imipramine, bupropion, MK-801, or 7-nitroindazole produced an antidepressant-like effect in mice exposed or not to TNF-α. TNF-α-treated mice presented increased p38MAPK phosphorylation and decreased Akt phosphorylation, and the later effect was prevented by folic acid (10 mg/kg, p.o.). Additionally, ERK1 phosphorylation was increased in mice treated with TNF-α + folic acid (1 mg/kg), but no effects on ERK2 or JNK1/2/3 phosphorylation were found in any group. The results indicate the efficacy of folic acid to counteract the depressive-like behavior induced by a pro-inflammatory cytokine, an effect that might be associated with the activation of monoaminergic systems, inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) synthesis, as well as Akt modulation.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Folic Acid/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Vitamin B Complex/pharmacology , Animals , Antidepressive Agents/administration & dosage , Disease Models, Animal , Female , Folic Acid/administration & dosage , Mice , Vitamin B Complex/administration & dosage
14.
Mol Psychiatry ; 26(12): 7257-7269, 2021 12.
Article in English | MEDLINE | ID: mdl-34316004

ABSTRACT

We demonstrate that the rate of extracellular signal-related kinase phosphorylation (P-ERK1,2/Total-ERK1,2) in the amygdala is negatively and independently associated with anxiety symptoms in 23 consecutive patients with drug-resistant mesial temporal lobe epilepsy that was surgically treated. In naive Wistar rats, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala correlates negatively with innate anxiety-related behavior on the elevated plus maze (n = 20) but positively with expression of defensive-learned behavior (i.e., freezing) on Pavlovian aversive (fear) conditioning (n = 29). The microinfusion of ERK1/2 inhibitor (FR180204, n = 8-13/group) or MEK inhibitor (U0126, n = 8-9/group) into the basolateral amygdala did not affect anxiety-related behavior but impaired the evocation (anticipation) of conditioned-defensive behavior (n = 9-11/group). In conclusion, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala predicts anxiety in humans and the innate anxiety- and conditioned freezing behaviors in rats. However, the ERK1/2 in the basolateral AMY is only required for the expression of defensive-learned behavior. These results support a dissociate ERK-dependent mechanism in the amygdala between innate anxiety-like responses and the anticipation of learned-defensive behavior. These findings have implications for understanding highly prevalent psychiatric disorders related to the defensive circuit manifested by anxiety and fear. HIGHLIGHTS: The P-ERK1,2/Total-ERK1,2 ratio in the amygdala (AMY) correlates negatively with anxiety symptoms in patients with mesial temporal lobe epilepsy. The P-ERK1,2/Total-ERK1,2 in the amygdala correlates negatively with the anxiety-like behavior and positively with freezing-learned behavior in naive rats. ERK1,2 in the basolateral amygdala is required for learned-defensive but not for the anxiety-like behavior expression in rats.


Subject(s)
Amygdala , Anxiety , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Amygdala/metabolism , Animals , Anxiety/metabolism , Humans , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Rats , Rats, Wistar
15.
Purinergic Signal ; 17(2): 285-301, 2021 06.
Article in English | MEDLINE | ID: mdl-33712981

ABSTRACT

Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).


Subject(s)
Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/drug effects , Guanosine/pharmacology , Membrane Glycoproteins/drug effects , Protein-Tyrosine Kinases/drug effects , Receptors, AMPA/agonists , Signal Transduction/drug effects , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Calcium Channels/drug effects , Dendritic Spines/drug effects , Feeding Behavior/drug effects , Female , Hindlimb Suspension , Hippocampus/drug effects , Hippocampus/metabolism , Membrane Glycoproteins/biosynthesis , Mice , Neurogenesis/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Protein-Tyrosine Kinases/biosynthesis , Synapses/drug effects
16.
Metab Brain Dis ; 36(4): 711-722, 2021 04.
Article in English | MEDLINE | ID: mdl-33528752

ABSTRACT

Fluoxetine is the foremost prescribed antidepressant. Drugs acting on monoaminergic system may also regulate glutamatergic system. Indeed, the investigation of proteins associated with this system, such as Narp (neuronal activity-dependent pentraxin) and GluA4 subunit of AMPA receptor may reveal poorly explored modulations triggered by conventional antidepressants. This study aimed to uncover neurochemical mechanisms underlying the chronic fluoxetine treatment, mainly by evaluating these protein targets in the prefrontal cortex and in the hippocampus. Mice received a daily administration of fluoxetine (0.1, 1 or 10 mg/kg, p.o.) or potable water (vehicle group) for 21 days. These animals were submitted to the forced swim test (FST) to verify antidepressant-like responses and the open-field test (OFT) to assess locomotor activity. Modulation of signaling proteins was analyzed by western blot. Chronic treatment with fluoxetine (1 and 10 mg/kg) was effective, since it reduced the immobility time in the FST, without altering locomotor activity. Fluoxetine 10 mg/kg increased CREB phosphorylation and BDNF expression in the prefrontal cortex and hippocampus. Noteworthy, in the hippocampus fluoxetine also promoted Akt activation and augmented Narp expression. In the prefrontal cortex, a significant decrease in the expression of the GluA4 subunit and Narp were observed following fluoxetine administration (10 mg/kg). The results provide evidence of novel molecular targets potentially involved in the antidepressant effects of fluoxetine, since in mature rodents Narp and GluA4 are mainly expressed in the GABAergic parvalbumin-positive (PV+) interneurons. This may bring new insights into the molecular elements involved in the mechanisms underlying the antidepressant effects of fluoxetine.


Subject(s)
Antidepressive Agents, Second-Generation/administration & dosage , C-Reactive Protein/antagonists & inhibitors , Drug Delivery Systems/methods , Fluoxetine/administration & dosage , Nerve Tissue Proteins/antagonists & inhibitors , Receptors, AMPA/antagonists & inhibitors , Animals , Brain/drug effects , Brain/metabolism , C-Reactive Protein/metabolism , Dose-Response Relationship, Drug , Male , Mice , Nerve Tissue Proteins/metabolism , Receptors, AMPA/metabolism
17.
Mol Neurobiol ; 58(4): 1859-1870, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33404979

ABSTRACT

The central autonomic network, which is connected to the limbic system structures including the amygdala (AMY) and anterior hippocampus (aHIP), regulates the sympathetic and parasympathetic modulation of visceromotor, neuroendocrine, pain, and behavior manifestations during stress responses. Heart rate variability (HRV) is useful to estimate the cardiac autonomic tone. The levels of phosphorylation on the Ser831 and Ser845 sites of the GluA1 subunit of the AMPAr (P-GluA1-Ser845 and P-GluA1-Ser831) are useful markers of synaptic plasticity. The relation between synaptic plasticity in the human limbic system structures and autonomic regulation in humans is unknown. This study investigated the association between HRV and neurochemistry biomarkers of synaptic plasticity in AMY and aHIP. HRV indices were obtained from the resting state electrocardiogram of patients with drug-resistant mesial temporal lobe epilepsy (MTLE, n = 18) and the levels of P-GluA1-Ser845 and P-GluA1-Ser831 in the AMY and aHIP resected during the epilepsy surgery. A backward stepwise multiple linear regression models were used to analyze the association between HRV and synaptic plasticity biomarkers controlling for imbalances in the distribution of sociodemographic, clinical, neuroimaging, and neurosurgical variables. P-GluA1-Ser845 levels in AMY show a negative association (p < 0.05) with the 3 investigated parasympathetic autonomic HRV indices (SDNN, rMSSD, and HF) predicting 24 to 40% of their variation. The final multiple linear regression models include disease duration and levels of P-GluA1-Ser845 and predict 24 to 56% of cardiac autonomic tone variation (p < 0.01). P-GluA1-Ser845 levels in AMY and aHIP are negatively associated with the resting HRV in MTLE-HS indicating that increased synaptic efficiency in amygdala is associated with a parasympathetic cardiac autonomic tone impairment. The results suggest that specific changes in synaptic plasticity may be involved in the brain-heart axis regulation by the limbic system.


Subject(s)
Autonomic Nervous System/metabolism , Heart/innervation , Limbic System/metabolism , Phosphoserine/metabolism , Receptors, AMPA/metabolism , Amygdala/metabolism , Biomarkers/metabolism , Female , Heart Rate , Hippocampus/metabolism , Humans , Male , Neuronal Plasticity , Phosphorylation
18.
Mol Neurobiol ; 58(2): 735-749, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33011857

ABSTRACT

Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.


Subject(s)
Depression/physiopathology , Dopamine Uptake Inhibitors/pharmacology , Dopamine/deficiency , Memory, Short-Term , Norepinephrine/metabolism , Pyruvaldehyde/adverse effects , Animals , Bupropion/pharmacology , Dopamine/metabolism , Female , Glutathione/metabolism , Immobilization , Memory, Short-Term/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Activity/drug effects , Phosphorylation/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Pyruvaldehyde/administration & dosage , Serotonin/metabolism , Tyrosine 3-Monooxygenase/metabolism
19.
Biochimie ; 180: 186-204, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33171216

ABSTRACT

Glioblastoma multiforme is the most aggressive type of glioma, with limited treatment and poor prognosis. Despite some advances over the last decade, validation of novel and selective antiglioma agents remains a challenge in clinical pharmacology. Prior studies have shown that leguminous lectins may exert various biological effects, including antitumor properties. Accordingly, this study aimed to evaluate the mechanisms underlying the antiglioma activity of ConBr, a lectin extracted from the Canavalia brasiliensis seeds. ConBr at lower concentrations inhibited C6 glioma cell migration while higher levels promoted cell death dependent upon carbohydrate recognition domain (CRD) structure. ConBr increased p38MAPK and JNK and decreased ERK1/2 and Akt phosphorylation. Moreover, ConBr inhibited mTORC1 phosphorylation associated with accumulation of autophagic markers, such as acidic vacuoles and LC3 cleavage. Inhibition of early steps of autophagy with 3-methyl-adenine (3-MA) partially protected whereas the later autophagy inhibitor Chloroquine (CQ) had no protective effect upon ConBr cytotoxicity. ConBr also augmented caspase-3 activation without affecting mitochondrial function. Noteworthy, the caspase-8 inhibitor IETF-fmk attenuated ConBr induced autophagy and C6 glioma cell death. Finally, ConBr did not show cytotoxicity against primary astrocytes, suggesting a selective antiglioma activity. In summary, our results indicate that ConBr requires functional CRD lectin domain to exert antiglioma activity, and its cytotoxicity is associated with MAPKs and Akt pathways modulation and autophagy- and caspase-8- dependent cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Caspase 8/metabolism , Enzyme Activation/drug effects , Glioma/drug therapy , MAP Kinase Signaling System/drug effects , Plant Lectins/pharmacology , Animals , Apoptosis/drug effects , Astrocytes/drug effects , Autophagy/drug effects , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Glioma/metabolism , Glioma/pathology , Humans , Mice , Mitochondria/drug effects , Mitogen-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Polysaccharides/metabolism , Protein Domains/physiology , Protein Structure, Quaternary/physiology , Protein Structure, Tertiary/physiology , Proto-Oncogene Proteins c-akt/metabolism , Rats
20.
Brasília; Ipea; 2021. 12 p. ilus.(Nota Técnica / IPEA. Disoc, 97).
Monography in Portuguese | ECOS, LILACS | ID: biblio-1549919

ABSTRACT

Ao investigar o desempenho das operadoras médico-hospitalares, que vendem planos de assistência médica com ou sem cobertura odontológica, esta nota técnica apresenta uma breve ideia acerca da sua dimensão e mostra a sinistralidade e a lucratividade do mercado. Nas considerações finais, atenta para o fato de que esse mercado apresentou desempenho positivo em meio à estagnação da economia brasileira no período 2014-2018.


Subject(s)
Economic Indexes
SELECTION OF CITATIONS
SEARCH DETAIL