Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(4): 1338-1347, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274072

ABSTRACT

Synthesis and characterization of Lewis base free coordination polymers of selected lanthanides are presented. For this purpose, the substituted CotTIPS ligand (CotTIPS = 1,4-bis-triisopropylsilyl-cyclo-octatetraendiide) was used to synthesize homoleptic, anionic multidecker compounds of the type [K{LnIII(ɳ8-CotTIPS)2}]n. Depending on the solvent used for crystallization and the ionic radii of the lanthanide cations, three different categories of one-dimensional heterobimetallic coordination polymers were obtained in the solid state. For the early lanthanides La and Ce a unique helical conformation was obtained by crystallization from toluene, while the ionic radius of Pr seems to be a turning point towards the crystallization of zigzag polymers. For Er a third structural motif, a trapezoidal wave polymer was observed. Additionally, the zigzag polymer for all compounds could be obtained by changing the solvent from toluene to Et2O, reavealing a correlation between solid-state structure and ionic radii as well as solvent. While photoluminescence (PL) properties of Cot-lanthanide compounds are scarce, the La complexes show ligand centered green luminescence, whereas the Ce complexes reveal deep red emission origin from d-f transitions. The Er-compounds are single-molecule magnets, in which the magnetic relaxation of each Er ion occurs isolated from its neighbors at temperatures above 10 K, while below 9 K a strong antiferromagnetic coupling between the Er ions was seen.

2.
Small ; 20(16): e2307318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044287

ABSTRACT

Cucurbit[7]uril (CB7), a supramolecular host, is employed to control the pathway of photolysis of an aryl azide in an aqueous medium. Normally, photolysis of aryl azides in bulk water culminates predominantly in the formation of azepine derivatives via intramolecular rearrangement. Remarkably, however, when this process unfolds within the protective confinement of the CB7 cavity, it results in a carboline derivative, as a consequence of a C─H amination reaction. The resulting carboline caged by CB7 reveals long-lived room temperature phosphorescence (RTP) in the solid state, with lifetimes extending up to 2.1 s. These findings underscore the potential of supramolecular hosts to modulate the photolysis of aryl azides and to facilitate novel phosphorescent materials.

3.
Inorg Chem ; 62(38): 15627-15640, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37682719

ABSTRACT

The synthesis of C∧C∧P pre-ligands based on a dicyclohexylphosphine-substituted biphenyl framework is reported. The pre-ligands form the respective non-palindromic pincer complexes of PtII and PdII via double oxidative addition and subsequent comproportionation or C-H activation. The complexes of PtII as well as PdII emit similar green phosphorescence efficiently in the solid state, the former also in solution albeit with less intensity. The most fascinating photophysical feature, however, is a direct singlet-triplet (S0 → T1) excitation of this phosphorescence in the spectral window between the emission and the major singlet-singlet UV absorption. The S0 → T1 excitation spectra show a rich vibronic pattern, which is especially pronounced for the solid samples at cryogenic temperatures. The molar extinction of the lowest-energy singlet-triplet absorption band of the homologous Pt and Pd complexes as well as that of the Pt complex with a different (NHC) ancillary ligand were determined in tetrahydrofuran solutions. Quantum efficiencies of triplet formation (by intersystem crossing) via the "standard" excitation pathway S0 → Sn → T1 were determined for the Pt complexes and found to be different in dependence of the ancillary ligand.

4.
Nature ; 620(7972): 92-96, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532814

ABSTRACT

Cyclic nanometre-scale sandwich complexes assembled from individual building blocks were synthesized. Sandwich complexes, in which a metal ion is π-coordinated by two planar aromatic organic rings belong to the foundations of organometallic chemistry. They have been successfully used in a wide variety of applications ranging from catalysis, synthesis and electrochemistry to nanotechnology, materials science and medicine1,2. Extending the sandwich structural motif leads to linear multidecker compounds, in which aromatic organic rings and metal atoms are arranged in an alternating fashion. However, the extension to a cyclic multidecker scaffold is unprecedented. Here we show the design, synthesis and characterization of an isomorphous series of circular sandwich compounds, for which the term 'cyclocenes' is suggested. These cyclocenes consist of 18 repeating units, forming almost ideally circular, closed rings in the solid state, that can be described by the general formula [cyclo-MII(µ-η8:η8-CotTIPS)]18 (M = Sr, Sm, Eu; CotTIPS = 1,4-(iPr3Si)2C8H62-). Quantum chemical calculations lead to the conclusion that a unique interplay between the ionic metal-to-ligand bonds, the bulkiness of the ligand system and the energy gain on ring closure, which is crucially influenced by dispersion interactions, facilitate the formation of these cyclic systems. Up to now, only linear one-dimensional multidecker sandwich compounds have been investigated for possible applications such as nanowires3-10. This textbook example of cyclic sandwich compounds is expected to open the door for further innovations towards new functional organometallic materials.

5.
Dalton Trans ; 52(36): 12618-12622, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37642577

ABSTRACT

The synthesis of heteroleptic Cu(I) complexes with coumarin-functionalized aminodiphosphine and diimine ligands is described. The complexes show yellow to deep-red phosphorescence in the solid state at ambient temperature with quantum yields up to 21%. The emission color of the complexes can be tuned by systematic modifications in the ligand system.

6.
Chemistry ; 29(31): e202300497, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36930531

ABSTRACT

A coumarin functionalized aminodiphosphine has been introduced as a bidentate ligand in coinage metal chemistry. Mono-, di-, and trimetallic copper and silver complexes were synthesized with this ligand. The hybrid character of the ligand led to compounds with rich luminescence properties. These include coumarin-based blue fluorescence, observed as a sole emission in solution at room temperature, and green phosphorescence, which is efficient at low temperatures and dominates the spectra of the metal complexes. In the rigid environment of frozen solutions, the green phosphorescence shows an unusually long (for metal complexes) decay on the seconds timescale in high quantum yield. In addition, a red phosphorescence, which may be assigned to the triplet state localized in the phosphine-M3 Cl2 (M=Cu, Ag), is observed for the trinuclear complexes at low temperature. Neither the second-long phosphorescence nor the red emission is observed for the coumarin ligand, thus they must be a result of the coordination to coinage metal clusters. The excited states in these compounds were also investigated by femtosecond transient absorption spectroscopy and quantum chemical calculations.

7.
Chem Sci ; 14(6): 1613-1626, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36794193

ABSTRACT

Atomically precise nanomaterials with tunable solid-state luminescence attract global interest. In this work, we present a new class of thermally stable isostructural tetranuclear copper nanoclusters (NCs), shortly Cu4@oCBT, Cu4@mCBT and Cu4@ICBT, protected by nearly isomeric carborane thiols: ortho-carborane-9-thiol, meta-carborane-9-thiol and ortho-carborane 12-iodo 9-thiol, respectively. They have a square planar Cu4 core and a butterfly-shaped Cu4S4 staple, which is appended with four respective carboranes. For Cu4@ICBT, strain generated by the bulky iodine substituents on the carboranes makes the Cu4S4 staple flatter in comparison to other clusters. High-resolution electrospray ionization mass spectrometry (HR ESI-MS) and collision energy-dependent fragmentation, along with other spectroscopic and microscopic studies, confirm their molecular structure. Although none of these clusters show any visible luminescence in solution, bright µs-long phosphorescence is observed in their crystalline forms. The Cu4@oCBT and Cu4@mCBT NCs are green emitting with quantum yields (Φ) of 81 and 59%, respectively, whereas Cu4@ICBT is orange emitting with a Φ of 18%. Density functional theory (DFT) calculations reveal the nature of their respective electronic transitions. The green luminescence of Cu4@oCBT and Cu4@mCBT clusters gets shifted to yellow after mechanical grinding, but it is regenerated after exposure to solvent vapour, whereas the orange emission of Cu4@ICBT is not affected by mechanical grinding. Structurally flattened Cu4@ICBT didn't show mechanoresponsive luminescence in contrast to other clusters, having bent Cu4S4 structures. Cu4@oCBT and Cu4@mCBT are thermally stable up to 400 °C. Cu4@oCBT retained green emission even upon heating to 200 °C under ambient conditions, while Cu4@mCBT changed from green to yellow in the same window. This is the first report on structurally flexible carborane thiol appended Cu4 NCs having stimuli-responsive tunable solid-state phosphorescence.

8.
Chemistry ; 28(57): e202201856, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-35924459

ABSTRACT

The synthesis of heterobimetallic AuI /RuII complexes of the general formula syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 is reported. The ditopic bridging ligand L1∩L2 refers to a P,N hybrid ligand composed of phosphine and bipyridine substructures, which was obtained via a post-functionalization strategy based on Diels-Alder reaction between a phosphole and a maleimide moiety. It was found that the stereochemistry at the phosphorus atom of the resulting 7-phosphanorbornene backbone can be controlled by executing the metal coordination and the cycloaddition reaction in a different order. All precursors, as well as the mono- and multimetallic complexes, were isolated and fully characterized by various spectroscopic methods such as NMR, IR, and UV-vis spectroscopy as well as cyclic voltammetry. Photophysical measurements show efficient phosphorescence for the investigated monometallic complex anti-[(L1∩L2){Ru(bpy)2 }][PF6 ]2 and the bimetallic analogue syn-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 , thus indicating a small influence of the {AuCl} fragment on the photoluminescence properties. The heterobimetallic AuI /RuII complexes syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 are both active catalysts in the P-arylation of aryldiazonium salts promoted by visible light with H-phosphonate affording arylphosphonates in yields of up to 91 %. Both dinuclear complexes outperform their monometallic counterparts.

9.
Dalton Trans ; 51(27): 10357-10360, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35776128

ABSTRACT

The versatile metalloligand [{HCCC(NDipp)2}2Au2] (dipp = 2,6-diisopropylphenyl) was converted into early-late heterotetrametallic complexes [{ClCp2MCCC(NDipp)2}2Au2] (M = Ti, Zr). These compounds show photoluminescence with either remarkably different (Ti) or similar (Zr) features as compared to related solely coinage metal containing acetylide amidinate complexes.

10.
Angew Chem Int Ed Engl ; 61(25): e202201577, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35349208

ABSTRACT

Probing electrofluorochromism (EFC) at the molecular level remains challenging. Here we study the strongly charge state-dependent photoluminescence of vanadyl phthalocyanine. We report vibrationally resolved absorption and laser-induced fluorescence (LIF) spectra of samples comprising both the mass-selected neutral molecule (VOPc⋅, a stable radical) and its cation produced upon electron ionization (EI) isolated in 5 K neon matrices. Ionization of the essentially non-emissive VOPc⋅ forms a high-spin diradical cation (VOPc+.. ) which shows profound photoluminescence (PL) in the NIR range. This unique phenomenon is potentially of interest for NIR-emitting electro-optic devices.

11.
Chem Commun (Camb) ; 57(97): 13146-13149, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34807965

ABSTRACT

Reaction of the PNNP ligand system N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate (dpfam) featuring different coordination compartments with [AuCl(tht)], [CuMes]5, [AgMes]4, or [AuC6F5(tht)] (tht = tetrahydrothiophene) resulted in tetranuclear homo- and heterometallic coinage metal complexes, as well as a hexanuclear gold complex. All of them feature a metal string conformation. Photophysical investigation revealed a significant dependence of the photoluminescence properties on the metal composition. Below 100 K, the PL efficiency of three compounds approaches nearly 100%.

12.
Dalton Trans ; 50(38): 13412-13420, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34477184

ABSTRACT

A selective synthesis of bi- and trinuclear complexes featuring a tetradentate monoanionic PNNP ligand is presented. The binuclear coinage metal complexes show a typical fourfold coordination for Cu and Ag, which changes to a bifold coordination for Au. The latter is accompanied by an unusual charge separation. Optical properties are investigated using photoluminescence spectroscopy and complemented by time-dependent density-functional-theory calculations. All compounds demonstrate clearly distinguished features dependent on the metals chosen and differences in the complex scaffold.

13.
Chemistry ; 27(61): 15201-15207, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34415066

ABSTRACT

We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterotrimetallic trisporphyin complexes. The protocol encompasses synthesising the first aryl-based, trans-o-phenylene trisporphyrin starting from pyrrole and benzaldehyde with an overall yield of 3.6 %. It also allows investigating the respective cis-isomer as the first conformationally restricted planar-chiral trisporphyrin. The free-base ligand was used in subsequent metalation reactions to afford the corresponding homotrimetallic Mn(III)-, Fe(III)-, Ni(II)-, Cu(II)-, Zn(II)- and Pd(II) complexes - additionally, a small adaptation of the protocol resulted in the defined Ni(II)Fe(III)Ni(II) complex in a total yield of 2.3 %. By monitoring Ni(II) insertion into the empty trimeric ligands, we affirmed that the outer porphyrin rings are filled before the internal ring. The molecular species were characterised by 1 H NMR, UV-Vis, photoluminescence, IR, MS, CID, and high-resolution IMS measurements.

14.
Angew Chem Int Ed Engl ; 60(43): 23365-23372, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34415105

ABSTRACT

Combining phase-dependent photoluminescence (PL) measurements and quantum chemical calculations is a powerful approach to help understand the influence of the molecular surroundings on the PL properties. Herein, a phosphine functionalized amidinate was used to synthesize a recently presented bimetallic gold complex, featuring an unusual charge separation. The latter was subsequently used as metalloligand to yield heterotetrametallic complexes with an Au-M-M-Au "molecular wire" arrangement (M=Cu, Ag, Au) featuring metallophilic interactions. All compounds show bright phosphorescence in the solid state, also at ambient temperature. The effect of the molecular environment on the PL was studied in detail for these tetrametallic complexes by comparative measurements in solution, in the solid state and in the gas phase and contrasted to time-dependent density functional theory computations.

15.
Chemistry ; 27(61): 15119-15126, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34427374

ABSTRACT

A novel bis(diphenylphosphino)methane (DPPM) functionalized amidine ligand (DPPM-C(N-Dipp)2 H) (Dipp=2,6-diisopropylphenyl) was synthesized. Subsequent deprotonation with suitable alkali metal bases resulted in the corresponding complexes [M{DPPM-C(N-Dipp)2 }(Ln )] (M=Li, Na, K, Rb, Cs; L=thf, Et2 O). The alkali metal complexes form monomeric species in the solid state, exhibiting intramolecular metal-π-interactions. In addition, a caesium derivative [Cs{PPh2 CH2 -C(N-Dipp)2 }]6 was obtained by cleavage of a diphenylphosphino moiety, forming an unusual six-membered ring structure in the solid state. All complexes were fully characterized by single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy as well as elemental analysis. Furthermore, the photoluminescent properties of the complexes were thoroughly investigated, revealing differences in emission with regards to the respective alkali metal. Interestingly, the hexanuclear [Cs{PPh2 CH2 -C(N-Dipp)2 }]6 metallocycle exhibits a blue emission in the solid state, which is significantly red-shifted at low temperatures. The bifunctional design of the ligand, featuring orthogonal donor atoms (N vs. P) and a high steric demand, is highly promising for the construction of advanced metal and main group complexes.

16.
Inorg Chem ; 60(12): 8936-8945, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34110815

ABSTRACT

The optical properties of four new trinuclear chalcogenolato bridged metal complexes [Ag2Ti(SPh)6(PPh3)2], [Na(thf)3]2[Ti(SPh)6], [Cu2Ti(SePh)6(PPh3)2], and [Ag2Ti(SePh)6(PPh3)2] have been investigated by absorption and photoluminescence spectroscopy as well as time-dependent density functional theory (TDDFT) calculations and compared to the results published recently for [Cu2Ti(SPh)6(PPh3)2]. All of these compounds are distinguished by efficient near-infrared luminescence at ∼880-1200 nm in the solid state at low temperatures, which remains quite intense for the copper-titanium complexes at ambient temperature with PL quantum yields of 9.5 and 4.8% at λPL = 1090 and 1240 nm for [Cu2Ti(EPh)6(PPh3)2], E = S, Se, respectively. According to the calculations, a peculiar feature of the lowest-energy electronic transitions in these complexes is their high localization on the metal and chalcogen atoms, with negligible contributions of the "external" ligand groups. Correspondingly, the type of atoms in the M2TiE6 (M = Cu, Ag, Na) core structure determines optical properties such as the absorption and emission wavelengths and PL lifetime.

17.
Chemistry ; 27(61): 15109-15118, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-33899967

ABSTRACT

The synthesis of copper and zinc complexes of four variably substituted iminophosphonamide ligands is presented. While the copper complexes form ligand-bridged dimers, the zinc compounds are monomeric. Due to different steric demand of the ligand the arrangement of the ligands within the dimeric complexes varies. Similar to the structurally related iminophosphonamide complexes of alkali metals and calcium, the steady-state and time-resolved photoluminescence (PL) of four of the seven compounds studied here as solids in a temperature range of 5-295 K can be described within the scheme of thermally activated delayed fluorescence (TADF). Accordingly, they exhibit bright blue-green phosphorescence at low temperatures (<100 K), which turns into delayed fluorescence by increasing the temperature. However, unusually, the fluorescence is practically absent in two copper complexes which otherwise still conform to the TADF scheme. In these cases, the excited singlet states decay essentially non-radiatively and their thermal population from the corresponding low-lying triplet states efficiently quenches PL (phosphorescence). Three other copper and zinc complexes only exhibit prompt fluorescence, evidencing a wide variation of photophysical properties in this class of compounds. The excited states of the copper complex with especially pronounced phosphorescence quenching were also investigated by low-temperature time-resolved infrared spectroscopy and quantum chemical calculations.

18.
J Am Chem Soc ; 143(2): 798-804, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33405904

ABSTRACT

The crown-ether coordination compounds ZnX2(18-crown-6), EuX2(18-crown-6) (X: Cl, Br, I), MnI2(18-crown-6), Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) are obtained by ionic-liquid-based synthesis. Whereas MX2(18-crown-6) (M: Zn, Eu) show conventional structural motives, Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) exhibit unusual single MnX4 tetrahedra coordinated to the crown-ether complex. Surprisingly, some compounds show outstanding photoluminescence. Thus, rare Zn2+-based luminescence is observed and unexpectedly efficient for ZnI2(18-crown-6) with a quantum yield of 54%. Unprecedented quantum yields are also observed for Mn3I6(18-crown-6)2, EuBr2(18-crown-6), and EuI2(18-crown-6) with values of 98, 72, and 82%, respectively, which can be rationalized based on the specific structural features. Most remarkable, however, is Mn2I4(18-crown-6). Its specific structural features with finite sensitizer-activator couples result in an extremely strong emission with an outstanding quantum yield of 100%. Consistent with its structural features, moreover, anisotropic angle-dependent emission under polarized light and nonlinear optical (NLO) effects occur, including second-harmonic generation (SHG). The title compounds and their optical properties are characterized by single-crystal structure analysis, X-ray powder diffraction, chemical analysis, density functional theory (DFT) calculations, and advanced spectroscopic methods.

19.
Chemistry ; 27(13): 4401-4411, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33355402

ABSTRACT

The synthesis of calcium complexes ligated by three different chiral iminophosphonamide ligands, L-H (L=[Ph2 P{N(R)CH(CH3 )Ph}2 ]), L'-H (L'=[Ph2 P{NDipp}{N(R)CH(CH3 )Ph}]), (Dipp=2,6-i Pr2 C6 H3 ), and L''-H (L''=[Ph2 P{N(R)CH(CH3 )naph}2 ]), (naph=naphthyl) is presented. The resulting structures [L2 Ca], [L'2 Ca], and [L''2 Ca] represent the first examples of enantiopure homoleptic calcium complexes based on this type of ligands. The calcium complexes show blue-green photoluminescence (PL) in the solid state, which is especially bright at low temperatures. Whereas the emission of [L''2 Ca] is assigned to the fluorescence of naphthyl groups, the PL of [L2 Ca] and [L'2 Ca] is contributed by long-lived phosphorescence and thermally activated delayed fluorescence (TADF), with a strong variation of the PL lifetimes over the temperature range of 5-295 K. Furthermore, an excellent catalytic activity was found for these complexes in hydroboration of ketones at room temperature, although no enantioselectivity was achieved.

20.
Nanotechnology ; 31(50): 505302, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33021238

ABSTRACT

We have studied the capability of He+ focused ion beam (He+-FIB) patterning to fabricate defect arrays on the Si/SiO2/Graphene interface using a combination of atomic force microscopy (AFM) and Raman imaging to probe damage zones. In general, an amorphized 'blister' region of cylindrical symmetry results upon exposing the surface to the stationary focused He+ beam. The topography of the amorphized region depends strongly on the ion dose, DS , (ranging from 103 to 107ions/spot) with craters and holes observed at higher doses. Furthermore, the surface morphology depends on the distance between adjacent irradiated spots, LS . Increasing the dose leads to (enhanced) subsurface amorphization and a local height increase relative to the unexposed regions. At the highest areal ion dose, the average height of a patterned area also increases as ∼1/LS . Correspondingly, in optical micrographs, the µm2-sized patterned surface regions change appearance. These phenomena can be explained by implantation of the He+ ions into the subsurface layers, formation of helium nanobubbles, expansion and modification of the dielectric constant of the patterned material. The corresponding modifications of the terminating graphene monolayer have been monitored by micro Raman imaging. At low ion doses, DS , the graphene becomes modified by carbon atom defects which perturb the 2D lattice (as indicated by increasing D/G Raman mode ratio). Additional x-ray photoionization spectroscopy (XPS) measurements allow us to infer that for moderate ion doses, scattering of He+ ions by the subsurface results in the oxidation of the graphene network. For largest doses and smallest LS values, the He+ beam activates extensive Si/SiO2/C bond rearrangement and a multicomponent material possibly comprising SiC and silicon oxycarbides, SiOC, is observed. We also infer parameter ranges for He+-FIB patterning defect arrays of potential use for pinning transition metal nanoparticles in model studies of heterogeneous catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...