Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Cytotherapy ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38551525

ABSTRACT

BACKGROUND AIMS: Gene therapy using lentiviral vectors (LVs) that harbor a functional ß-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS: After HSPCs were transduced with an LV encoding the therapeutic ß-globin (ßA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS: We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of ßA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS: Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.

2.
Am J Hematol ; 98(1): 11-22, 2023 01.
Article in English | MEDLINE | ID: mdl-36161320

ABSTRACT

lovo-cel (bb1111; LentiGlobin for sickle cell disease [SCD]) gene therapy (GT) comprises autologous transplantation of hematopoietic stem and progenitor cells transduced with the BB305 lentiviral vector encoding a modified ß-globin gene (ßA-T87Q ) to produce anti-sickling hemoglobin (HbAT87Q ). The efficacy and safety of lovo-cel for SCD are being evaluated in the ongoing phase 1/2 HGB-206 study (ClinicalTrials.gov: NCT02140554). The treatment process evolved over time, using learnings from outcomes in the initial patients to optimize lovo-cel's benefit-risk profile. Following modest expression of HbAT87Q in the initial patients (Group A, n = 7), alterations were made to the treatment process for patients subsequently enrolled in Group B (n = 2, patients B1 and B2), including improvements to cell collection and lovo-cel manufacturing. After 6 months, median Group A peripheral blood vector copy number (≥0.08 c/dg) and HbAT87Q levels (≥0.46 g/dL) were inadequate for substantial clinical effect but stable and sustained over 5.5 years; both markedly improved in Group B (patient B1: ≥0.53 c/dg and ≥2.69 g/dL; patient B2: ≥2.14 c/dg and ≥6.40 g/dL, respectively) and generated improved biologic and clinical efficacy in Group B, including higher total hemoglobin and decreased hemolysis. The safety of the lovo-cel for SCD treatment regimen largely reflected the known side effects of HSPC collection, busulfan conditioning regimen, and underlying SCD; acute myeloid leukemia was observed in two patients in Group A and deemed unlikely related to insertional oncogenesis. Changes made during development of the lovo-cel treatment process were associated with improved outcomes and provide lessons for future SCD GT studies.


Subject(s)
Anemia, Sickle Cell , Hematopoietic Stem Cell Transplantation , Humans , Lentivirus/genetics , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Genetic Therapy/adverse effects , Hemoglobins/genetics
3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142774

ABSTRACT

The use of primary cells in human liver therapy is limited by a lack of cells. Induced pluripotent stem cells (iPSCs) represent an alternative to primary cells as they are infinitely expandable and can be differentiated into different liver cell types. The aim of our work was to demonstrate that simian iPSCs (siPSCs) could be used as a new source of liver cells to be used as a large animal model for preclinical studies. We first differentiated siPSCs into a homogenous population of hepatoblasts (siHBs). We then separately differentiated them into hepatocytes (siHeps) and cholangiocytes (siChols) expressing respective specific markers and displaying epithelial polarity. Moreover, we showed that polarized siChols can self-organize into 3D structures. These results should facilitate the deciphering of liver development and open the way to exploring co-culture systems that could be assessed during preclinical studies, including in autologous monkey donors, for regenerative medicine purposes.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Culture Techniques/methods , Cell Differentiation , Epithelial Cells , Hepatocytes/metabolism , Humans , Liver
4.
Nat Med ; 28(1): 81-88, 2022 01.
Article in English | MEDLINE | ID: mdl-35075288

ABSTRACT

Sickle cell disease (SCD) and transfusion-dependent ß-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34+ cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling ßA-T87Q-globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively. Inclusion and exclusion criteria were similar to those for allogeneic transplantation but restricted to patients lacking geno-identical, histocompatible donors. Four patients with TDT and three patients with SCD, ages 13-21 years, were treated after busulfan myeloablation 4.6-7.9 years ago, with a median follow-up of 4.5 years. Key primary endpoints included mortality, engraftment, replication-competent lentivirus and clonal dominance. No adverse events related to the drug product were observed. Clinical remission and remediation of biological hallmarks of the disease have been sustained in two of the three patients with SCD, and frequency of transfusions was reduced in the third. The patients with TDT are all transfusion free with improvement of dyserythropoiesis and iron overload.


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy , Lentivirus/genetics , beta-Thalassemia/therapy , Adolescent , Female , Genetic Therapy/adverse effects , Humans , Male , Treatment Outcome , Young Adult
5.
Mol Ther ; 29(9): 2841-2853, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33940155

ABSTRACT

A primary challenge in lentiviral gene therapy of ß-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVß-shα2, that allows coordinated expression of the therapeutic ßA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in ß-thalassemia. We demonstrate that LVß-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and ßA-T87Q-globin gene expression identical to the parent vector. Compared with the first ßA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVß-shα2 shows 1.7-fold greater potency to improve α/ß ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of ß-thalassemia and provide an improved benefit/risk ratio regardless of the ß-thalassemia genotype.


Subject(s)
Genetic Vectors/administration & dosage , RNA, Small Interfering/genetics , alpha-Globins/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , Cell Line , Cells, Cultured , Down-Regulation , Erythroid Cells/cytology , Erythroid Cells/metabolism , Genotype , Humans , K562 Cells , Lentivirus/genetics , Lentivirus/physiology , MicroRNAs/antagonists & inhibitors , Primary Cell Culture , Viral Load , beta-Thalassemia/therapy
6.
Exp Physiol ; 104(7): 1074-1089, 2019 07.
Article in English | MEDLINE | ID: mdl-31012180

ABSTRACT

NEW FINDINGS: What is the central question of this study? Do Fog2Rb-/Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT: GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb-/Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb-/Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.


Subject(s)
DNA-Binding Proteins/metabolism , Diet, High-Fat/adverse effects , Homeostasis/physiology , Intestine, Small/metabolism , Proline-Rich Protein Domains/physiology , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , Female , Intestine, Small/cytology , Male , Mice , Mice, 129 Strain , Mice, Transgenic , Protein Binding/physiology , Random Allocation , Transcription Factors/genetics
7.
Hum Gene Ther ; 30(10): 1306-1323, 2019 10.
Article in English | MEDLINE | ID: mdl-30848170

ABSTRACT

Recent marketing approval for genetically engineered hematopoietic stem and T cells bears witness to the substantial improvements in lentiviral vectors over the last two decades, but evaluations of the long-term efficacy and toxicity of gene and cell therapy products will, nevertheless, require further studies in nonhuman primate models. Macaca fascicularis monkeys from Mauritius have a low genetic diversity and are particularly useful for reproducible drug testing. In particular, they have a genetically homogeneous class I major histocompatibility complex system that probably mitigates the variability of the response to simian immunodeficiency virus infection. However, the transduction of simian cells with human immunodeficiency virus type 1 (HIV-1)-derived vectors is inefficient due to capsid-specific restriction factors, such as the tripartite motif-containing protein tripartite motif 5α, which prevent infection with non-host-adapted retroviruses. This study introduced the modified capsid of the macaque-trophic HIV-1 clone MN4/LSQD into the packaging system and compared transduction efficiencies between hematopoietic cells transduced with this construct and cells transduced with HIV-1 NL4-3-derived packaging constructs. Capsid modification increased transduction efficiency in all hematopoietic cells tested (by factors of up to 10), including hematopoietic progenitor cells, repopulating cells, and T cells from Mauritian Macaca fascicularis, regardless of vector structure or purification method. The study also established culture conditions similar to those used in clinical practice for the efficient transduction of hematopoietic stem and progenitor CD34+ cells. These results suggest that the procedure is suitable for use in Mauritian Macaca fascicularis, which can therefore be used as a model in preclinical studies for hematopoietic gene and cell therapy.


Subject(s)
Capsid/immunology , Genetic Vectors/metabolism , HIV-1/immunology , Hematopoietic Stem Cells/immunology , Macaca fascicularis/immunology , Transduction, Genetic/methods , Animals , Antigens, CD34/genetics , Antigens, CD34/immunology , Biomarkers/metabolism , Capsid/chemistry , Female , Gene Expression , Genetic Vectors/immunology , HIV-1/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/virology , Male , Mice , Mice, Inbred NOD , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , T-Lymphocytes/virology , Transplantation, Heterologous , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
8.
Mol Ther Methods Clin Dev ; 10: 156-164, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30101153

ABSTRACT

Enhanced gene transfer efficiencies and higher yields of transplantable transduced human hematopoietic stem cells are continuing goals for improving clinical protocols that use stemcell-based gene therapies. Here, we examined the effect of the HSC agonist UM171 on these endpoints in both in vitro and in vivo systems. Using a 22-hr transduction protocol, we found that UM171 significantly enhances both the lentivirus-mediated transduction and yield of CD34+ and CD34+CD45RA- hematopoietic cells from human cord blood to give a 6-fold overall higher recovery of transduced hematopoietic stem cells, including cells with long-term lympho-myeloid repopulating activity in immunodeficient mice. The ability of UM171 to enhance gene transfer to primitive cord blood hematopoietic cells extended to multiple lentiviral pseudotypes, gamma retroviruses, and non-integrating lentiviruses and to adult bone marrow cells. UM171, thus, provides an interesting reagent for improving the ex vivo production of gene-modified cells and for reducing requirements of virus for a broad range of applications.

9.
Exp Hematol ; 64: 12-32, 2018 08.
Article in English | MEDLINE | ID: mdl-29807062

ABSTRACT

The ß-hemoglobinopathies, transfusion-dependent ß-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. Therefore, gene therapy by one-time ex vivo modification of hematopoietic stem cells followed by autologous engraftment is an attractive new therapeutic modality. The first proof-of-principle of conversion to transfusion independence by means of a lentiviral vector expressing a marked and anti-sickling ßT87Q-globin gene variant was reported a decade ago in a patient with transfusion-dependent ß-thalassemia. In follow-up multicenter Phase II trials with an essentially identical vector (termed LentiGlobin BB305) and protocol, 12 of the 13 patients with a non-ß0/ß0 genotype, representing more than half of all transfusion-dependent ß-thalassemia cases worldwide, stopped red blood cell transfusions with total hemoglobin levels in blood approaching normal values. Correction of biological markers of dyserythropoiesis was achieved in evaluated patients. In nine patients with ß0/ß0 transfusion-dependent ß-thalassemia or equivalent severity (ßIVS1-110), median annualized transfusion volume decreased by 73% and red blood cell transfusions were stopped in three patients. Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent ß-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent ß-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.


Subject(s)
Genetic Vectors/therapeutic use , Hemoglobinopathies/therapy , Lentivirus/genetics , Anemia, Sickle Cell/therapy , Blood Transfusion , Clinical Trials as Topic , Developing Countries , Gene Editing , Genetic Vectors/genetics , Global Burden of Disease , Hematopoietic Stem Cell Transplantation , Hemoglobinopathies/epidemiology , Hemoglobinopathies/genetics , Humans , Iron Overload/etiology , Iron Overload/prevention & control , Mutagenesis, Site-Directed , Prevalence , Recombinant Proteins/genetics , Transplantation Conditioning/methods , beta-Globins/genetics , beta-Thalassemia/therapy
10.
N Engl J Med ; 378(16): 1479-1493, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29669226

ABSTRACT

BACKGROUND: Donor availability and transplantation-related risks limit the broad use of allogeneic hematopoietic-cell transplantation in patients with transfusion-dependent ß-thalassemia. After previously establishing that lentiviral transfer of a marked ß-globin (ßA-T87Q) gene could substitute for long-term red-cell transfusions in a patient with ß-thalassemia, we wanted to evaluate the safety and efficacy of such gene therapy in patients with transfusion-dependent ß-thalassemia. METHODS: In two phase 1-2 studies, we obtained mobilized autologous CD34+ cells from 22 patients (12 to 35 years of age) with transfusion-dependent ß-thalassemia and transduced the cells ex vivo with LentiGlobin BB305 vector, which encodes adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q). The cells were then reinfused after the patients had undergone myeloablative busulfan conditioning. We subsequently monitored adverse events, vector integration, and levels of replication-competent lentivirus. Efficacy assessments included levels of total hemoglobin and HbAT87Q, transfusion requirements, and average vector copy number. RESULTS: At a median of 26 months (range, 15 to 42) after infusion of the gene-modified cells, all but 1 of the 13 patients who had a non-ß0/ß0 genotype had stopped receiving red-cell transfusions; the levels of HbAT87Q ranged from 3.4 to 10.0 g per deciliter, and the levels of total hemoglobin ranged from 8.2 to 13.7 g per deciliter. Correction of biologic markers of dyserythropoiesis was achieved in evaluated patients with hemoglobin levels near normal ranges. In 9 patients with a ß0/ß0 genotype or two copies of the IVS1-110 mutation, the median annualized transfusion volume was decreased by 73%, and red-cell transfusions were discontinued in 3 patients. Treatment-related adverse events were typical of those associated with autologous stem-cell transplantation. No clonal dominance related to vector integration was observed. CONCLUSIONS: Gene therapy with autologous CD34+ cells transduced with the BB305 vector reduced or eliminated the need for long-term red-cell transfusions in 22 patients with severe ß-thalassemia without serious adverse events related to the drug product. (Funded by Bluebird Bio and others; HGB-204 and HGB-205 ClinicalTrials.gov numbers, NCT01745120 and NCT02151526 .).


Subject(s)
Genetic Therapy , beta-Globins/genetics , beta-Thalassemia/therapy , Adolescent , Adult , Antigens, CD34 , Child , Erythrocyte Transfusion/statistics & numerical data , Female , Gene Transfer Techniques , Genetic Vectors , Hemoglobins/analysis , Hemoglobins/genetics , Humans , Lentivirus/genetics , Male , Mutation , Transplantation, Autologous , Young Adult , beta-Thalassemia/genetics
11.
Cell Rep ; 21(12): 3524-3535, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29262331

ABSTRACT

GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. Mammals have six GATA and two FOG factors. We recently demonstrated that interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation. We show here that the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Unlike GATA-1, which inhibits cell division, FOG-2 promotes proliferation. Mice with a knockin of a Fog2 gene bearing a mutated LXCXE pRb-binding site are resistant to obesity and display higher rates of white-to-brown fat conversion. Thus, each component of the GATA/FOG complex (GATA-1 and FOG-2) is involved in pRb/E2F regulation, but these molecules have markedly different roles in the control of tissue homeostasis.


Subject(s)
Adipogenesis , DNA-Binding Proteins/metabolism , Obesity/genetics , Transcription Factors/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Amino Acid Motifs , Animals , Cell Line , Cell Proliferation , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Mice , Mutation , Obesity/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics
12.
13.
N Engl J Med ; 376(9): 848-855, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28249145

ABSTRACT

Sickle cell disease results from a homozygous missense mutation in the ß-globin gene that causes polymerization of hemoglobin S. Gene therapy for patients with this disorder is complicated by the complex cellular abnormalities and challenges in achieving effective, persistent inhibition of polymerization of hemoglobin S. We describe our first patient treated with lentiviral vector-mediated addition of an antisickling ß-globin gene into autologous hematopoietic stem cells. Adverse events were consistent with busulfan conditioning. Fifteen months after treatment, the level of therapeutic antisickling ß-globin remained high (approximately 50% of ß-like-globin chains) without recurrence of sickle crises and with correction of the biologic hallmarks of the disease. (Funded by Bluebird Bio and others; HGB-205 ClinicalTrials.gov number, NCT02151526 .).


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy , beta-Globins/genetics , Adolescent , Anemia, Sickle Cell/blood , Clinical Trials as Topic , Gene Expression , Genetic Therapy/adverse effects , Genetic Vectors , Hemoglobin A/metabolism , Humans , Lentivirus , Male
14.
Sci Rep ; 7: 39760, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28045072

ABSTRACT

Despite progress in human reproductive biology, the cause of male infertility often remains unknown, due to the lack of appropriate and convenient in vitro models of meiosis. Induced pluripotent stem cells (iPSCs) derived from the cells of infertile patients could provide a gold standard model for generating primordial germ cells and studying their development and the process of spermatogenesis. We report the characterization of a complex chromosomal rearrangement (CCR) in an azoospermic patient, and the successful generation of specific-iPSCs from PBMC-derived erythroblasts. The CCR was characterized by karyotype, fluorescence in situ hybridization and oligonucleotide-based array-comparative genomic hybridization. The CCR included five breakpoints and was caused by the inverted insertion of a chromosome 12 segment into the short arm of one chromosome 7 and a pericentric inversion of the structurally rearranged chromosome 12. Gene mapping of the breakpoints led to the identification of a candidate gene, SYCP3. Erythroblasts from the patient were reprogrammed with Sendai virus vectors to generate iPSCs. We assessed iPSC pluripotency by RT-PCR, immunofluorescence staining and teratoma induction. The generation of specific-iPSCs from patients with a CCR provides a valuable in vitro genetic model for studying the mechanisms by which chromosomal abnormalities alter meiosis and germ cell development.


Subject(s)
Erythroblasts/physiology , Induced Pluripotent Stem Cells/physiology , Infertility, Male/pathology , Nuclear Proteins/genetics , Sendai virus/genetics , Spermatocytes/physiology , Testis/pathology , Adult , Atrophy , Cell Cycle Proteins , Cell Differentiation , Cells, Cultured , Cellular Reprogramming Techniques , Chromosome Inversion/genetics , Chromosomes, Human, Pair 12/genetics , Comparative Genomic Hybridization , DNA-Binding Proteins , Female , Genetic Association Studies , Humans , In Situ Hybridization, Fluorescence , Infertility, Male/genetics , Karyotyping , Male , Meiosis/genetics
15.
Cancer ; 123(10): 1791-1799, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28026860

ABSTRACT

BACKGROUND: We recently reported that peroxisome proliferator-activated receptor γ agonists target chronic myeloid leukemia (CML) quiescent stem cells in vitro by decreasing transcription of STAT5. Here in the ACTIM phase 2 clinical trial, we asked whether pioglitazone add-on therapy to imatinib would impact CML residual disease, as assessed by BCR-ABL1 transcript quantification. METHODS: CML patients were eligible if treated with imatinib for at least 2 years at a stable daily dose, having yielded major molecular response (MMR) but not having achieved molecular response 4.5 (MR4.5 ) defined by BCR-ABL1/ABL1IS RNA levels ≤ 0.0032%. After inclusion, patients started pioglitazone at a dosage of 30 to 45 mg/day in addition to imatinib. The primary objective was to evaluate the cumulative incidence of patients having progressed from MMR to MR4.5 over 12 months. RESULTS: Twenty-four patients were included (age range, 24-79 years). No pharmacological interaction was observed between the drugs. The main adverse events were weight gain in 12 patients and a mean decrease of 0.4 g/dL in hemoglobin concentration. The cumulative incidence of MR4.5 was 56% (95% confidence interval, 37%-76%) by 12 months, despite a wide range of therapy duration (1.9-15.5 months), and 88% of 17 evaluable patients who were still on imatinib reached MR4.5 by 48 months. The cumulative incidence of MMR to MR4.5 spontaneous conversions over 12 months was estimated to be 23% with imatinib alone in a parallel cohort of patients. CONCLUSION: Pioglitazone in combination with imatinib was well tolerated and yielded a favorable 56% rate. These results provide a proof of concept needing confirmation within a randomized clinical trial (EudraCT 2009-011675-79). Cancer 2017;123:1791-1799. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Subject(s)
Antineoplastic Agents/therapeutic use , Hypoglycemic Agents/therapeutic use , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Thiazolidinediones/therapeutic use , Adult , Aged , Drug Therapy, Combination , Female , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Middle Aged , Pioglitazone , RNA, Messenger/metabolism , Young Adult
16.
Sci Rep ; 6: 35495, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759036

ABSTRACT

We have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors. The first strategy involved modifications of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705 + Y731F + T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs at significantly reduced vector doses. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Transduction, Genetic , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Culture Techniques , Cell Line , Dependovirus/classification , Gene Editing , Gene Expression , Genes, Reporter , Hematopoietic Stem Cells/virology , Host-Pathogen Interactions , Humans , Species Specificity
17.
Biomed J ; 39(1): 24-38, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27105596

ABSTRACT

Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no ß-globin chains. Novel approaches are being developed to correct the resulting α/ß-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy), which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for ß-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway.


Subject(s)
Complementary Therapies , Hematopoietic Stem Cell Transplantation , Time , beta-Thalassemia/therapy , Animals , Complementary Therapies/methods , Humans , Tissue Donors , Treatment Outcome , beta-Thalassemia/diagnosis
18.
Biochem Biophys Res Commun ; 472(4): 624-30, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26972250

ABSTRACT

The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors.


Subject(s)
Adipogenesis/drug effects , Azepines/pharmacology , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Histone Acetyltransferases/antagonists & inhibitors , Lysine/metabolism , Triazoles/pharmacology , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Binding Sites/drug effects , Chromosomal Proteins, Non-Histone/metabolism , Down-Regulation/drug effects , Histone Acetyltransferases/metabolism , Humans , Lipid Metabolism/drug effects , Mice , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Transcription Factors
19.
Hum Gene Ther ; 27(2): 148-65, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26886832

ABSTRACT

ß-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal ß-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic ß-globin gene derivative (ß(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. ß(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with ß-thalassemia and sickle cell disease.


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation , beta-Globins/genetics , beta-Thalassemia/therapy , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Clinical Trials as Topic , Gene Expression , Gene Transfer Techniques , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hematopoietic Stem Cells , Humans , Lentivirus/genetics , Lentivirus/metabolism , Patient Safety , Transgenes , Transplantation Conditioning/methods , beta-Globins/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/metabolism , beta-Thalassemia/pathology
20.
Genes Dev ; 29(24): 2603-16, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26680303

ABSTRACT

Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1(S310A) mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1(V205G) mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis.


Subject(s)
Cell Differentiation/genetics , Erythroid Cells/cytology , Erythropoiesis/physiology , Erythropoietin/metabolism , Insulin-Like Growth Factor I/metabolism , Signal Transduction , Anemia, Hemolytic/genetics , Animals , Cell Proliferation/genetics , Enzyme Activation/genetics , Erythropoiesis/genetics , Erythropoietin/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Gene Knock-In Techniques , Mice , Mutation , Nuclear Proteins/metabolism , Oncogene Protein v-akt/metabolism , Phosphorylation , Protein Binding/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...